
Technical Guideline BSI TR-03151
Secure Element API (SE API)

Version 1.0.1
20. December 2018

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn

E-Mail: registrierkassen@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2018

mailto:registrierkassen@bsi.bund.de?subject=Technical%20Guideline%20BSI%20TR-03151
https://www.bsi.bund.de/
mailto:registrierkassen@bsi.bund.de?subject=Technical%20Guideline%20BSI%20TR-03151

Table of Contents

Table of Contents
1 Introduction.. 7

1.1 Motivation... 7

1.2 Purpose and general functionality of the SE API.. 7

1.3 Content and scope... 8

1.4 Key words.. 8

2 Log messages and their creation... 10

2.1 Common Log Message Structure... 10

2.2 Contents of Log Message... 11

2.3 Types of log messages.. 12
2.3.1 Transaction logs.. 12
2.3.2 System logs.. 13
2.3.3 Audit logs... 13

2.4 Signature Computation and Verification... 14

2.5 Creation of Transaction Logs... 14
2.5.1 Start a transaction.. 14
2.5.2 Update a transaction... 14
2.5.3 Finish a transaction... 15
2.5.4 Visualisation of the signature computation and verification (informative)...16

3 Secure Element Functionality.. 18

3.1 Time Formats.. 18

4 Secure Element API Functionality... 19

4.1 Error handling.. 20
4.1.1 Common Exceptions.. 20

4.2 Restricted usage of functions.. 21

4.3 Maintenance and Time Synchronization.. 22
4.3.1 Initialize.. 22
4.3.2 UpdateTime... 24
4.3.3 DisableSecureElement... 26

4.4 Input Functions... 27
4.4.1 StartTransaction.. 27
4.4.2 UpdateTransaction... 29
4.4.3 FinishTransaction... 32

4.5 Export Functions... 33
4.5.1 ExportData... 33
4.5.2 ExportCertificates... 38
4.5.3 RestoreFromBackup.. 38
4.5.4 ReadLogMessage... 41
4.5.5 ExportSerialNumbers... 42

4.6 Utility Functions.. 42
4.6.1 GetMaxNumberOfClients.. 42
4.6.2 GetCurrentNumberOfClients... 43
4.6.3 GetMaxNumberOfTransactions.. 44
4.6.4 GetCurrentNumberOfTransactions... 45
4.6.5 GetSupportedTransactionUpdateVariants.. 46
4.6.6 DeleteStoredData.. 47

Federal Office for Information Security 3

Table of Contents

4.7 Authentication... 48
4.7.1 AuthenticateUser.. 48
4.7.2 LogOut... 51
4.7.3 UnblockUser... 52

5 Export Formats... 55

5.1 TAR and TLV Export... 55
5.1.1 Initialization Information File... 55
5.1.2 Log Messages Files.. 55
5.1.3 Certificate files.. 60

6 Appendix A: System log messages.. 61

6.1 Initialize... 61

6.2 UpdateTime.. 61

6.3 DisableSecureElement.. 61

6.4 AuthenticateUser... 61

6.5 LogOut.. 62

6.6 UnblockUser.. 62

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java..63

7.1 Introduction.. 63

7.2 Mapping of basic types... 64

7.3 Definition of strings... 66

7.4 Enumerations... 66

7.5 Arrays.. 67

7.6 Definition context... 67

7.7 Exceptions.. 67

7.8 Optional function parameters.. 69

7.9 Function input parameters... 69

7.10 Function output parameters.. 71

7.11 Return value... 73

8 Appendix C: The TAR file format.. 74

9 Appendix D: TLV structure for the return of serial numbers..77

10 Appendix E: ASN.1 definition of log messages... 79

References.. 81

Figures
Figure 1: General system architecture in the context of the SE API..7
Figure 2: TAR file format.. 74

Tables
Table 1: Key words... 9
Table 2: Common structure of a log message... 10
Table 3: Description of the elements of the log message.. 11
Table 4: Structure of the certifiedData of a transaction log...12
Table 5: Description of the elements of the certifiedData for transaction logs..13

4 Bundesamt für Sicherheit in der Informationstechnik

Table of Contents

Table 6: Structure of the certifiedData of a system log... 13
Table 7: Description of the elements of the certifiedData for system logs...13
Table 8: Functionality of the Secure Element... 18
Table 9: Formats for date/time values.. 18
Table 10: Functions with restricted usage.. 21
Table 11: Input parameters initialize function.. 22
Table 12: Exceptions for the initialize function... 23
Table 13: Input parameters for the updateTime function.. 24
Table 14: Exceptions for updateTime function.. 25
Table 15: Exceptions for disableSecureElement function..27
Table 16: Input parameters for startTransaction function... 28
Table 17: Output parameters for startTransaction function...28
Table 18: Exceptions of the startTransaction function... 29
Table 19: Input parameters for updateTransaction function..30
Table 20: Output parameters for updateTransaction function...30
Table 21: Exceptions of the updateTransaction function.. 31
Table 22: Input parameter of the finishTransaction function...32
Table 23: Output parameter for finishTransaction function...32
Table 24: Exceptions for finishTransaction function... 33
Table 25: Input parameters for exportData function.. 35
Table 26: Output parameters for exportData function.. 35
Table 27: Exceptions for exportData function... 36
Table 28: Output parameters for exportCertificates function..38
Table 29: Exceptions for exportCertificates function... 38
Table 30: Input parameters restoreFromBackup function...39
Table 31: Exceptions of restoreFromBackup function... 39
Table 32: Output parameters for the readLogMessage function...41
Table 33: Exceptions for readLogMessage function.. 41
Table 34: Output parameters for exportSerialNumbers function..42
Table 35: Exceptions for exportSerialNumbers function.. 42
Table 36: Output parameters for getMaxNumberOfClients function..43
Table 37: Exceptions for the getMaxNumberOfClientsg function...43
Table 38: Output parameters for getCurrentNumberOfClients function...44
Table 39: Exceptions for getCurrentNumberOfClients function..44
Table 40: Output parameters for getMaxNumberOfTransactions function..44
Table 41: Exceptions for getMaxNumberOfTransactions function...45
Table 42: Output parameters for getCurrentNumberOfTransactions function...45
Table 43: Exceptions for getCurrentNumberOfTransactions function..46
Table 44: Output parameters for getSupportedTransactionUpdateVariants function..47
Table 45: Exceptions for getSupportedTransactionUpdateVariants function...47
Table 46: Exceptions for deleteStoredData function... 48
Table 47: Input parameters authenticateUser function... 49
Table 48: Output parameters authenticateUser function... 49
Table 49: Exceptions for authenticateUser function... 49
Table 50: Input parameters logOut function.. 51
Table 51: Exceptions for logOut function... 51
Table 52: Input parameters unblockUser function.. 52
Table 53: Output parameters unblockUser function.. 52
Table 54: Exceptions for unblockUser function.. 53
Table 55: Parts of the file names for transaction log messages in export tar archive...57
Table 56: Parts of the file names of system log messages in export tar archive..58
Table 57: Parts of the file names of audit log messages in export tar archive..59
Table 58: Parts of the file names of certificates in export tar archive..60

Federal Office for Information Security 5

Table of Contents

Table 59: Relevant building blocks in [OMG2017a]... 63
Table 60: Overview of the following chapters.. 64
Table 61: Mapping of data types... 66
Table 62: Tar file members header... 76
Table 63: Structure for the return of serial numbers... 77
Table 64: Description of the elements of the TLV structure for the return of serial numbers..................................78

6 Bundesamt für Sicherheit in der Informationstechnik

Introduction 1

1 Introduction

1.1 Motivation

In the course of digitalisation, many applications nowadays rely on digital signatures in order to protect the
authenticity and integrity of information. Due to legal or organisational requirements, such applications
need a certain level of protection of their signature keys, i.e. private signature keys must be protected from
unauthorized usage and disclosure via a suitable secure component. Such a level of protection can be
achieved by the usage of a Secure Element (SE).

This document specifies the Secure Element API (SE API). The SE API is a digital interface that wraps
functionality of a Secure Element and allows access to security functionalities by an application in a
standardized way regardless of the specific type of Secure Element in use (see Figure 1). In the context of
particular use cases, it can also be necessary to include a storage medium.

The main purpose of this interface is to secure authenticity and integrity of information by creating digital
signatures over them.

Federal Office for Information Security 7

Figure 1: General system architecture in the context of the SE API

1.2 Purpose and general functionality of the SE API

A more specific purpose is the protection of externally provided process data with a unique transaction
number and a time-stamp. Both additional parameters, time and counter, as well as the process data, are
covered by the signature. The time-stamp provides information about the point in time when the signature
creation was performed. Furthermore, a signature counter, that is increased with every signature, allows to
easily detect the absence of a signature.

The SE API works in the following way:

1 Introduction

1. Process data flow into the SE API.

2. In the SE API, the process data are forwarded to the Secure Element.

3. If required, the Secure Element creates a new transaction number for the current transaction.

4. The Secure Element creates a signature over the process data and the additional self-provided data (a
time-stamp, a signature counter and other information).

5. Then, the SE API composes and returns a log message; the Secure Element is invoked for parts of the log
message. The log message contains the signature and all additional data, that was used in the signature
creation process (and is needed to verify the signature).

The set of log messages can be used to verify the completeness of transactions. Furthermore, it is ensured
that the contained process data was signed at a certain time (and has not been altered since) and that the
signature creation happened in succession to a signature creation over data containing a smaller signature
counter value.

Besides, the SE-API also creates log messages of particular system operations (system logs) and auditable
events inside the Secure Element (audit logs)

1.3 Content and scope

This Technical Guideline focuses on the creation and structure of the log messages, their export, and the
specification of the integration interfaces to the application.

The integration interface is defined in the OMG Interface Definition Language (IDL) - a generic interface
description language. The OMG IDL [OMG2017a] is a text based, language independent definition language
for interfaces.

The descriptions in this document are designed to be independent of any concrete implementation. Possible
implementations of an API as described in this document include (but are not limited to) a SOAP-API or the
direct exposition of a classical API from the programming language that the API is developed in.

Neither the physical interface, by which the SE API is exposed, nor any other layers in terms of the ISO/OSI
reference model are defined by this Technical Guideline. This allows a maximum degree of flexibility for a
Secure Element application developer.

The functions of the SE API are described regarding their function parameters, their behavior, and the
exceptions. The interaction between the SE API and the Secure Element is only considered in an abstract,
technologically independent way.

This document is accompanied by a ZIP archive [SPECZIP] that contains:

– the definitions of the SE API in form of its OMG IDL definition,

– the translation of the OMG IDL definitions to Java,

– the translation of the OMG IDL definitions to ANSI C.

1.4 Key words

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document SHALL be interpreted as described in
[RFC2119].

The key word "CONDITIONAL" is to be interpreted as follows: The usage of an item is dependent on the
usage of other items. It is therefore further qualified under which conditions the item is REQUIRED or
RECOMMENDED.

8 Federal Office for Information Security

Introduction 1

When used in tables (profiles), the key words are abbreviated as shown in Table 1.

Federal Office for Information Security 9

Key word Abbrev.

MUST / SHALL REQUIRED m

MUST NOT / SHALL NOT – x

SHOULD RECOMMENDED r

MAY OPTIONAL o

– CONDITIONAL c

Table 1: Key words

2 Log messages and their creation

2 Log messages and their creation
Log messages contain data to be protected, protocol data that is generated by a Secure Element during the
logging process, and a signature protecting this data.

The following types of log messages and types of data are distinguished within this Technical Guideline:

– Transaction logs

– MUST be used to protect external data (transaction data) that is passed to the Secure Element via the
SE API.

– System logs

– MUST be used to protect information (system operation data) of the invocation of a system operation
of the SEAPI.

– Audit logs:

– MUST be used to protect data of auditable events (audit data) created by the Secure Element.

This chapter defines the common structure for all types of log messages as well as the specific data fields of
the different log types including their contents.

2.1 Common Log Message Structure

The log message MUST be structured in the following way:

Data field Tag Data type Mandatory?

Log Message 0x30 SEQUENCE m

version 0x02 INTEGER m

certifiedDataType 0x06 OBJECT IDENTIFIER m

certifiedData ANY DEFINED BY certifiedDataType o

serialNumber 0x04 OCTET STRING m

signatureAlgorithm 0x30 SEQUENCE m

algorithm 0x06 OBJECT IDENTIFIER m

parameters ANY DEFINED BY algorithm o

seAuditData 0x04 OCTET STRING c

signatureCounter 0x02 INTEGER c

logTime CHOICE m

utcTime 0x17 UTCTime

generalizedTime 0x18 GeneralizedTime

unixTime 0x02 INTEGER

signatureValue 0x04 OCTET STRING m

Table 2: Common structure of a log message

10 Federal Office for Information Security

Log messages and their creation 2

2.2 Contents of Log Message

The elements of the log message structure MUST contain the following information:

Data Description Origin of data

version MUST always be present.
MUST contain the version of the log message format,
provided by the Secure Element.
The value SHALL be set to “2”.

Provided by the Secure
Element.

certifiedDataType MUST always be present.
MUST identify the type of log message and the type of the
certified data (if any) provided by the Secure Element.
The possible values are defined in sections 2.3.

Provided by the Secure
Element.

certifiedData MUST be present for a transaction log and a system log.
In this case, MUST contain concatenation of certified data1
defined by the corresponding certifiedDataType.
Details of the certified data structure and their values are
defined in sections 2.3.

Provided by the
application and/or the
Secure Element.

serialNumber MUST always be present.
MUST identify the serial number of the Secure Element
consisting of the hash value of the public key of the certificate
used to verify transaction logs encoded as an octet string.

Provided by the Secure
Element.

signatureAlgorithm MUST always be present.
MUST contain information about the signature creation.

Provided by the Secure
Element.

algorithm MUST always be present.
MUST identify the signature algorithm used by the Secure
Element to generate the signature of the log message.
The value MUST be configured in the Secure Element
according to [BSI TR-03116].

Provided by the Secure
Element.

parameters MAY be present.
If present, the log message MUST contain the associated
parameters of the signature algorithm employed.
The structure and the value of the parameters depend on the
particular algorithm employed.

Provided by the Secure
Element.

seAuditData MUST be present for an audit log.
In this case, the log message MUST contain audit data created
by the Secure Element.

Created by the Secure
Element.

signatureCounter MUST always be present.
MUST contain a signature counter.
The value SHALL contain the current count of signatures as
created by the Secure Element.

Created by the Secure
Element.

logTime MUST always be present.
MUST contain the point in time of the Secure Element when
the log message was created.

Created by the Secure
Element.

signatureValue MUST always be present.
MUST contain the result of the signature computation as
defined by section 2.4 encoded as octet string.

Created by the Secure
Element.

Table 3: Description of the elements of the log message

1 The concatenation MUST NOT be embedded into an additional SEQUENCE structure.

Federal Office for Information Security 11

2 Log messages and their creation

2.3 Types of log messages

This section specifies the structure and the content of different log types.

2.3.1 Transaction logs

A transaction log MUST be identified by the following object identifier (id-SE-API-transaction-log):

• bsi-de (0.4.0.127.0.7.0) applications (3) sE-API (7) sE-API-dataformats(1) 1

The certifiedData MUST be structured as follows:

Data field Tag Data type Mandatory?

operationType 0x80 PrintableString m

clientId 0x81 PrintableString m

processData 0x82 OCTET STRING m

processType 0x83 PrintableString c

additionalExternalData 0x84 OCTET STRING o

transactionNumber 0x85 INTEGER m

additionalInternalData 0x86 OCTET STRING o

Table 4: Structure of the certifiedData of a transaction log

The length encoding of the element processData is CONDITIONAL.

• If the process data is transmitted to the Secure Element in more than one step (cf. Section 2.5 for
details), indefinite length encoding according to [ITU2015b], MUST be used. This has the advantage
that the length of the process data being signed need not be known in advance of the signature
generation process.

• Otherwise, definite length encoding according to [ITU2015b] MUST be used.

The elements of a transaction log MUST contain the following information:

Data Description

operationType MUST always be present.
MUST contain the name of the SE API function, according to this specification,
whose execution is recorded by the log message. E.g. “StartTransaction”

clientId MUST always be present.
MUST represent the ID of the application that has initiated the logging of a
transaction phase.

processData MUST always be present.
MUST contain the process data.
The value is defined by the external application.

processType MAY be present.
The field MUST be present in case of the start, a signed update or the finalization of
a transaction (cf. Section 2.5 for details).
In this case, it MUST contain information about the type of process.
The value is defined by the external application.

additionalExternalData MAY be present.
If present, MUST contain additional (TLV encoded) data encoded as an octet string.
The value is defined by the external application.

12 Federal Office for Information Security

Log messages and their creation 2

Data Description

transactionNumber MUST always be present.
MUST contain the transaction number generated by the Secure Element at the
start of the transaction.

additionalInternalData MAY be present.
If present, MUST contain additional TLV encoded protocol data encoded as an
octet string.

Table 5: Description of the elements of the certifiedData for transaction logs

2.3.2 System logs

A system log MUST be identified by the following object identifier (id-SE-API-system-log):

• bsi-de (0.4.0.127.0.7.0) applications (3) sE-API (7) sE-API-dataformats(1) 2

The certifiedData MUST be structured as follows:

Data field Tag Data type Mandatory?

operationType 0x80 PrintableString m

systemOperationData 0x81 OCTET STRING m

additionalInternalData 0x82 OCTET STRING o

Table 6: Structure of the certifiedData of a system log

The elements MUST contain the following information:

Data Description

operationType MUST always be present.
MUST contain the name of the system operation, according to this specification,
whose execution is recorded by the log message. E.g. “UpdateTime”

systemOperationData MUST always be present.
MUST contain information about the system operation. A list of system operations
and the corresponding systemOperationData is given in Appendix A in chapter 6.

additionalInternalData MAY be present.
If present, MUST contain additional BER-TLV encoded protocol data encoded as an
octet string.

Table 7: Description of the elements of the certifiedData for system logs

The certified data of specific system operations is specified in Appendix A in chapter 6.

2.3.3 Audit logs

An audit log MUST be identified by the following object identifier (id-SE-API-SE-audit-log):

• bsi-de (0.4.0.127.0.7.0) applications (3) sE-API (7) sE-API-dataformats(1) 3

Audit log MUST NOT contain any certified data. Instead, the corresponding audit data is defined by the
Secure Element and MUST be contained in the data field seAuditData (cf. Table 3).

The specification of auditable events and the corresponding seAuditData depends on the particular Secure
Element used and is out of scope of this Technical Guideline. See for example [BSI PP-CSP] for further
details.

Federal Office for Information Security 13

2 Log messages and their creation

2.4 Signature Computation and Verification

The input to the signature generation and verification process consists of the concatenation of all preceding
log message elements, i.e. the following elements (if present):

• version

• certifiedDataType

• certifiedData

• serialNumber

• signatureAlgorithm

• seAuditData

• signatureCounter

• logTime

For signature calculation, all elements MUST be DER encoded except for the field processData in the
certifiedData structure of a transaction log, when indefinite length encoding applies (cf. Section 2.3.1).

The signature MUST be computed using the private key that belongs to the certificate to be used for the
verification of the corresponding log message type. The key pair MUST be managed by the Secure Element.

The details of the signature computation depend on the particular signature algorithm employed.

After the affiliation and the correctness of the certificate belonging to the log messages has been verified, the
log message signature verification SHALL be performed analogue to the signature creation using the public
key of the certificate for the verification of g log message type.

2.5 Creation of Transaction Logs

Every transaction SHALL be started and finished by calling the corresponding API functions. Additionally,
every transaction MAY be updated between start and finish.

2.5.1 Start a transaction

The result of a started transaction SHALL be a log message. The structure of this log message SHALL follow
the definitions from table 2 and 4.

2.5.2 Update a transaction

During the first execution of the transaction update, the process data SHALL be managed by the Secure
Element. On every subsequent call the passed process data SHALL be added to the value of concatenated
process data from previous calls of the function to update the transaction.

Note: The process data already signed by the transaction start log message are not included in the update
process data.

14 Federal Office for Information Security

Log messages and their creation 2

Text 1 shows the concatenation of process data during a transaction update:

Input:

From application: clientId
processDatainput

From Secure Element: initialization of processDataupdate i-1 with an empty value during the first
call of updateTransaction, otherwise previous processDataupdate i-1

Action: processDataupdate i = processDataupdate i-1 || processDatainput

Output nothing / status message

Text 1: Concatenation of process data in the context of a transaction update

Due to the limited memory capacity of some Secure Elements, the process data passed with every update
MAY already be fed into the hash function of the signature algorithm. After this, the Secure Element can
discard the passed process data from its internal memory. Only the hash function of the signature algorithm
SHALL be used for this. The signature hash function SHALL remain open to add additional data in
subsequent updates. The hash function SHALL be closed during the finish of the transaction.

If necessary, the Secure Element MAY sign not yet secured process data received during the update process.
In this case, the signature SHALL be calculated over all process data that has been received so far and that
has not yet been secured.

2.5.2.1 Log Message Signature Creation with Signed Updates

Due to limited capacities of a Secure Element, it might be required to not only create log messages for the
start and finish of a transaction, but also for process data updates. By implementing this technique, no
intermediate data needs to be stored on the Secure Element, as every input is directly fed into a signature.
The result of a signed update of a transaction SHALL be a log message. The structure of this log message
SHALL follow the definitions from table 2 and 4.

2.5.3 Finish a transaction

To finish a transaction, a signature over all process data sent to the Secure Element after the start of the
transaction and the data that is provided by the Secure Element SHALL be created. This SHALL cause the
creation of a log message. The structure of this log message SHALL follow the scheme defined in table 2 and
table 4.

The following cases SHALL be considered:

1. If the process data has been concatenated during updates without being already fed into the hash
function of the signature algorithm, the signature SHALL be calculated over the whole array of stored
process data and the data that is provided by the Secure Element.

2. If the process data of updates has already been fed into the hash function of signature algorithm, the hash
SHALL be updated with the function call of the transaction finish, and the data that is provided by the
Secure Element. Subsequently, the hash function SHALL be closed and the signature SHALL be created.

Federal Office for Information Security 15

2 Log messages and their creation

2.5.4 Visualisation of the signature computation and verification (informative)

Text 2 provides an informative overview on how the log message signature of a transaction log is created.

First the message M is created. M is the input data of the signature function. The message is built by the
concatenation of the values of the application data, provided by the application, and the values of the data
that is created and provided by the Secure Element.

Essential for the creation of a signature over the various data elements is a private key. This private key, here
called keyprivate, belongs to the key pair for creating signatures for transaction log messages. The key pair is
managed by the Secure Element. This key is used for the creation of signature sig over M.

Note: The symbol “||” depicts a concatenation of data.

Input:

From application: clientIdD

processData2

processType

additionalExternalData

From Secure Element: version

certifiedDataType

operationType

transactionNumber

additionalInternalData

serialNumber

signatureAlgorithm

signatureCounter

logTime

Action: message M := version||certifiedDataType||certifiedData||serialNumber||
signatureAlgorithm||seAuditData||signatureCounter||logTime

signature sig := SignatureFunction (keyprivate, M)

Output: sig

Text 2: Visualisation of the signature computation of transaction log

The log message signatures is verified with the public key of the certificate whose public key corresponds to
the serial number that is included in the log message.

2 The process data might be the concatenation of data transmitted during several updates and the finish of a
transaction, cf. 2.5.2

16 Federal Office for Information Security

Log messages and their creation 2

 message M := version||certifiedDataType||certifiedData||serialNumber||signatureAlgorithm||
seAuditData||signatureCounter||logTime

 verificationResult := VerifySignatureFunction (keypublic, sig, M, signatureAlgorithm)

Text 3: General verification of protocol data

Federal Office for Information Security 17

3 Secure Element Functionality

3 Secure Element Functionality
The SE API serves as a wrapper around the functionality of a Secure Element. However, the specification of
the SE API assumes that the Secure Element provides a certain set of functionality.

Table 8 provides a generic overview over this functionality. The Secure Element SHALL provide these
functionalities. However, concrete aspects as the names of the functions should not be understood as
normative requirements with respect to the Secure Element. Furthermore, the specification does not state
any particular requirements regarding the practical implementation of this functionality.

Functionality Description

Authenticate user This function serves to authenticate the user and to establish a trusted
channel.

Start a transaction This function starts an external transaction with the Secure Element.

Update a transaction This function updates an external transaction with the Secure Element.

Finish a transaction This function finishes an external transaction with the Secure Element.

Sign a transaction This function allows to secure process information by the use of a log message
(which is signed).

Sign system operation data This function allows to protect system operation data by the use of a log
message.

Retrieve a log message This function retrieves the last log message parts from the Secure Element.

Set time This function sets the time that is maintained by the Secure Element.

Disable Secure Element This function disables the functionalities of the Secure Element

Table 8: Functionality of the Secure Element

3.1 Time Formats

The Secure Element manages the date/time that is used for the creation of time-stamps in log messages.
This time SHALL be represented by one of the formats in table 9:

Type Description

ASN.1 UTCTime
(see [ITU2015])

UTCTime according to [ITU2015] SHALL be used in UTC±0 / zulu
time. Format: YYMMDDhhmm[ss]Z3

ASN.1 GeneralizedTime
(see [ITU2015])

GeneralizedTime according to [ITU2015] SHALL be used in UTC±0 /
zulu time. Format: YYYYMMDDhhmmss[.fff]Z3

Unix Time Unix Time SHALL conform to the definition in [IEEECS2018]. The
Unix Time SHALL be represented by a 64-bit integer number.

Table 9: Formats for date/time values

3 The specifications in the square brackets are OPTIONAL

18 Federal Office for Information Security

Secure Element API Functionality 4

4 Secure Element API Functionality
This section specifies the following API functions:

• Maintenance functions

• Initialize

• UpdateTime

• DisableSecureElement

• Input functions

• StartTransaction

• UpdateTransaction

• FinishTransaction

• Export functions

• ExportData

• ExportCertificates

• RestoreFromBackup

• ReadLogMessage

• ExportSerialNumber

• Utility functions

• GetMaxNumberOfClients

• GetCurrentNumberOfClients

• GetMaxNumberOfTransactions

• GetCurrentNumberOfTransations

• GetSupportedTransactionUpdateVariants

• DeleteStoredData

• Authentication functions

• AuthenticateUser

• LogOut

• UnblockUser

To be conformant to this Technical Guideline, all functions of the SE API SHALL be implemented, with
exception of the functions restoreFromBackup (see chapter 4.5.3) and deleteStoredData (see chapter 4.6.6).
The function restoreFromBackup MAY be implemented. The function deleteStoredData SHOULD be
implemented. This function is especially important if a storage of small size is used.

Federal Office for Information Security 19

4 Secure Element API Functionality

4.1 Error handling

If an application receives any kind of error from the SE API, it falls into the responsibility of the application
to handle the situation. Depending on the concrete function that threw the error and depending on the
concrete error, the application may:

– decide to do nothing at all,

– simply repeat the last function call,

– repeat a larger amount of steps.

4.1.1 Common Exceptions

The following chapters 4.1.1.1 to 4.1.1.4 define exceptions that are relevant for several of the SE API
functions.

4.1.1.1 ErrorSeApiNotInitialized

The exception ErrorSeApiNotInitialized SHALL be implemented by all functions of the SE API, except the
functions initialize, authenticateUser, logOut and unblockUser. This exception SHALL be raised if an SE API
function is invoked although the SE API has not been initialized.

4.1.1.2 ErrorTimeNotSet

The exception ErrorTimeNotSet SHALL be implemented by the following functions of the SE API:

– startTransaction

– updateTransaction

– finishTransaction

– disableSecureElement

This exception SHALL be raised if one of these SE API functions is invoked although the time managed by
the Secure Element has no defined value.

4.1.1.3 ErrorCertificateExpired

The exception ErrorCertificateExpired SHALL be implemented by the following SE API functions:

– initialize

– disableSecureElement

– updateTime

– startTransaction

– updateTransaction

– finishTransaction

The exception SHALL be raised if these functions are invoked and the certificate expired. Even if a
certificate is expired, the log message parts SHALL be created by the Secure Element and stored by the SE
API. In this case, the exception ErrorCertificateExpired SHALL be raised only after the data of the log
message has been stored.

20 Federal Office for Information Security

Secure Element API Functionality 4

4.1.1.4 ErrorSecureElementDisabled

The exception ErrorSecureElementDisabled SHALL be realized by the following functions of the SE API:

– initialize

– updateTime

– startTransaction

– updateTransaction

– finishTransaction

– readLogMessage

– disableSecureElement

– getMaxNumberOfClients

– getCurrentNumberOfClients

– getMaxNumberOfTransactions

– getCurrentNumberOfTransactions

– getSupportedTransactionUpdateVariants

– authenticateUser

– logOut

– unblockUser

This exception SHALL be raised during the execution of these functions if the Secure Element has been
disabled.

4.2 Restricted usage of functions

The usage of the SE API functions in table 10 SHALL be restricted to authorized users (e.g. an administrator).
In the following the term user is used synonymously for human users and applications.

Functions with restricted usage

initialize

updateTime

deleteStoredData

disableSecureElement

restoreFromBackup

Table 10: Functions with restricted usage

For the implementation of this restriction, at least the following security mechanisms SHALL be
implemented.

If a function listed in table 10 is invoked, the SE API SHALL check if the invoking user is authorized to use
the function.

The SE API SHALL implement the following roles for authorized users with the corresponding rights:

– Admin: This role SHALL allow the usage of all restricted functions in table 10.

Federal Office for Information Security 21

4 Secure Element API Functionality

– TimeAdmin: This role SHALL allow the usage of the function updateTime.

An authorized user SHALL be identified by the SE API by a unique identifier (UserID). The SE API SHALL
authenticate an authorized user by a PIN. The SE API SHALL manage the status of the authentication of
authorized users. Additionally, the SE API SHALL manage the assignment of either the role Admin or
TimeAdmin to authorized users. The authentication of authorized users by the SE API is implemented by
the function authenticateUser (see chapter 4.7.1).

A limit for successive entries of a wrong PIN by a user SHALL be defined. In this context, the SE API SHALL
manage a PIN retry counter for every authorized user. If the limit for the successive entries of incorrect PINs
for a user is reached, the SE API SHALL block the user PIN entry.

In addition to the PIN, a user SHALL have a Personal Unblocking Key (PUK) that enables an unblocking of
the PIN entry. Countermeasures against passwort guessing attacks SHALL be implemented. If a correct PUK
has been entered, the user SHALL be unblocked and the user SHALL be able to change the PIN. The
unblocking of a user is implemented by the function unblockUser (see chapter 4.7.3).

The combinations of UserID, PIN, PUK and role for the authorized users SHALL be managed by the SE API.

After authorized users have finished their current usage of the restricted functions, they SHALL log out from
the SE API. This log-out is implemented by the function logOut (see chapter 4.7.2). If an authenticated user
does not invoke a function for an appropriate period of time, the SE API SHALL log out the user
automatically. After the log out of an authenticated user, the SE API SHALL set the corresponding status for
the user to not authenticated.

4.3 Maintenance and Time Synchronization

4.3.1 Initialize

The function initialize MUST be used to start the initialization of the SE API.

4.3.1.1 Initialize – Input parameters

Name Type (OMG IDL) Required? Meaning

description string CONDITIONAL This parameter presents a short
description of the SE API.

The parameter SHALL only be used if
the description of the SE API has not
been set by the manufacturer.

no input parameter is
passed

none CONDITIONAL The function SHALL be invoked without
any parameter value if the description of
the SE API has been set by the
manufacturer.

Table 11: Input parameters initialize function

4.3.1.2 Initialize – Output parameters

None.

22 Federal Office for Information Security

Secure Element API Functionality 4

4.3.1.3 Initialize – Exceptions

Exception Meaning

ErrorSigningSystemOperationDataFailed The determination of the log message parts for the system
operation data by the Secure Element failed.

ErrorStoringInitDataFailed Storing of the initialization data failed.

ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality to
retrieve log message parts has failed.

ErrorStorageFailure Storing of data of the log message has failed.

ErrorCertificateExpired The certificate corresponding to key signing the log
message expired. The exception ErrorCertificateExpired
SHALL be raised after the data of the log message has been
stored.

ErrorSecureElementDisabled The Secure Element has been disabled.

ErrorUserNotAuthorized The user who has invoked the function initialize is not
authorized to execute this function.

ErrorUserNotAuthenticated The user who has invoked the function initialize has not
the status authenticated.

ErrorDescriptionNotSetByManufacturer The function initialize has been invoked without a value
for the input parameter description although the
description of the SE API has not been set by the
manufacturer.

ErrorDescriptionSetByManufacturer The function initialize has been invoked with a value for
the input parameter description although the description
of the SE API has been set by the manufacturer.

Table 12: Exceptions for the initialize function

4.3.1.4 Initialize – Detailed description

The following description specifies the behavior of the initialize function in detail:

1. The function SHALL check if the user that has invoked the function has the status authenticated (cf.
chapter 4.2). If the status is not authenticated, the function SHALL raise the exception
ErrorUserNotAuthenticated and exit the function.

2. If the user has the status authenticated, the function SHALL check in the corresponding role (cf. chapter
4.2) if the user is authorized to execute the function. If the user is not authorized, the function SHALL
raise the exception ErrorUserNotAuthorized and exit the function.

3. If the function initialize is invoked

1. without an input parameter, the function SHALL check if the data for the description of the SE API
has been set by the manufacturer. If the description has not been set, the function SHALL raise the
exception ErrorDescriptionNotSetByManufacturer and exit the function.

2. with a value for the input parameter description, the function SHALL execute the following tasks:

1. The function SHALL check if the data for description of the SE API has been set by the
manufacturer. If the description has been set by the manufacturer, the function SHALL raise the
exception ErrorDescriptionSetByManufacturer and exit the function.

Federal Office for Information Security 23

4 Secure Element API Functionality

2. If the description is not set, the function SHALL store the passed description data. If the
description data is not stored successfully, the SE API SHALL set back the description of the SE API
to the state before storing the provided description data. Furthermore, the function SHALL raise
the exception ErrorStoringInitDataFailed and exit the function.

4. The function SHALL invoke the functionality of the Secure Element to create the log message parts for
the initialization. In this context, the function SHALL pass the data for the description of the SE API to
the Secure Element. If the execution of this Secure Element functionality fails, the function initialize
SHALL raise the exception ErrorSigningSystemOperationDataFailed.

5. The function SHALL retrieve the parts of the log message determined by the Secure Element. If the
retrieval of the log message parts fails, the function SHALL raise the exception
ErrorRetrieveLogMessageFailed and exit the function.

6. The function SHALL store the data of the previously retrieved log message parts on the storage medium.
If the data has not been stored successfully, the function SHALL raise the exception ErrorStorageFailure.

7. The function SHALL return the value EXECUTION_OK to indicate that the execution of the function
initialize has been successful.

4.3.2 UpdateTime

The function updateTime can be used to update the current date/time that is maintained by the Secure Element.

4.3.2.1 UpdateTime – Input parameters

Name Type (OMG IDL) Required? Meaning

newDateTime DateTime CONDITIONAL The new time value for the date/time
maintained by the Secure Element. The
value SHALL conform to a format from
chapter 3.1.

no input parameter is
passed

none CONDITIONAL If the underlying Secure Element
supports time synchronization, this
feature is utilized.

Table 13: Input parameters for the updateTime function

4.3.2.2 UpdateTime – Output parameters

None.

24 Federal Office for Information Security

Secure Element API Functionality 4

4.3.2.3 UpdateTime – Exceptions

Exception Meaning

ErrorUpdateTimeFailed The execution of the Secure Element functionality to
set the time failed.

ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality to
retrieve log message parts has failed.

ErrorStorageFailure Storing of data of the log message has failed.

ErrorSeApiNotInitialized The function updateTime is invoked although the SE API
has not been initialized.

ErrorCertificateExpired The certificate corresponding to key signing the log
message expired. The exception ErrorCertificateExpired
SHALL be raised after the data of the log message has been
stored.

ErrorSecureElementDisabled The Secure Element has been disabled.

ErrorUserNotAuthorized The user who has invoked the function updateTime is not
authorized to execute this function.

ErrorUserNotAuthenticated The user who has invoked the function updateTime has
not the status authenticated.

Table 14: Exceptions for updateTime function

Federal Office for Information Security 25

4 Secure Element API Functionality

4.3.2.4 UpdateTime – Detailed description

The following description specifies the behavior of the updateTime function in detail:

1. The function SHALL check if the user that has invoked the function has the status authenticated (cf.
chapter 4.2). If the status is not authenticated, the function SHALL raise the exception
ErrorUserNotAuthenticated and exit the function.

2. If the user has the status authenticated, the function SHALL check in the corresponding role (cf. chapter
4.2) if the user is authorized to execute the function. If the user is not authorized, the function SHALL
raise the exception ErrorUserNotAuthorized and exit the function.

3. If the function updateTime is invoked

1 without an input parameter, the function SHALL instruct the Secure Element to use its time
synchronization mechanism to update the local time. If the execution fails, the function SHALL raise
the exception ErrorUpdateTimeFailed.

2 with a value for the input parameter newDateTime, the function SHALL invoke the functionality of
the Secure Element to set the time with the provided newDateTime. If the execution fails, the
function SHALL raise the exception ErrorUpdateTimeFailed.

4. The function SHALL retrieve the parts of the log message determined by the Secure Element. If the
retrieval of the log message parts fails, the function SHALL raise the exception
ErrorRetrieveLogMessageFailed.

5. The function SHALL store the data of the previously retrieved log message parts on the storage medium.
If the data has not been stored successfully, the function SHALL raise the exception ErrorStorageFailure.

6. The function SHALL return the value EXECUTION_OK to indicate that the execution of the function
updateTime has been successful.

4.3.3 DisableSecureElement

This function SHALL disable the Secure Element in a way that none of its functionality can be used
anymore.

4.3.3.1 DisableSecureElement – Input parameters

None.

4.3.3.2 DisableSecureElement– Output parameters

None.

4.3.3.3 DisableSecureElement – Exceptions

Exception Meaning

ErrorDisableSecureElementFailed The deactivation of the Secure Element failed.

ErrorTimeNotSet The function disableSecureElement is invoked although
the time managed by the Secure Element has no defined
value.

26 Federal Office for Information Security

Secure Element API Functionality 4

Exception Meaning

ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality to
retrieve log message parts has failed.

ErrorStorageFailure Storing of the data of the log message failed.

ErrorCertificateExpired The certificate corresponding to key signing the log
message expired. The exception ErrorCertificateExpired
SHALL be raised after the data of the log message has been
stored.

ErrorSecureElementDisabled The Secure Element has been disabled.

ErrorUserNotAuthorized The user who has invoked the function
disableSecureElement is not authorized to execute this
function.

ErrorUserNotAuthenticated The user who has invoked the function
disableSecureElement has not the status authenticated.

Table 15: Exceptions for disableSecureElement function

4.3.3.4 DisableSecureElement – Detailed description

The following description specifies the behavior of the function disableSecureElement in detail:

1. The function SHALL check if the user that has invoked the function has the status authenticated (cf.
chapter 4.2). If the status is not authenticated, the function SHALL raise the exception
ErrorUserNotAuthenticated and exit the function.

2. If the user has the status authenticated, the function SHALL check in the corresponding role (cf. chapter
4.2) if the user is authorized to execute the function. If the user is not authorized, the function SHALL
raise the exception ErrorUserNotAuthorized and exit the function.

3. The function SHALL invoke the functionality of the Secure Element to create the log message parts to log
its deactivation.

4. The function SHALL retrieve the parts of the log message determined by the Secure Element. If the
retrieval of the log message parts fails, the function SHALL raise the exception
ErrorRetrieveLogMessageFailed and exit the function.

5. The function SHALL invoke the functionality of the Secure Element for its deactivation. If the
deactivation of the Secure Element fails, the function SHALL raise the exception
ErrorDisableSecureElementFailed and exit the function.

6. If the deactivation of the Secure Element has been successful, the data of the retrieved log message parts
SHALL be stored. If the data has not been stored successfully, the function SHALL raise the exception
ErrorStorageFailure.

7. If the data has been stored successfully, the function SHALL return the return value EXECUTION_OK to
indicate that the execution of the function disableSecureElement has been successful.

4.4 Input Functions

4.4.1 StartTransaction

This function provides the functionality to start a new transaction.

Federal Office for Information Security 27

4 Secure Element API Functionality

4.4.1.1 StartTransaction – Input parameters

Name Type (OMG IDL) Required? Meaning

clientId string REQUIRED Represents the ID of the application that
has invoked the function.

processData octet [] REQUIRED This parameter represents all the
necessary information regarding the
initial state of the process.

processType string<100> OPTIONAL This parameter is used to identify the
type of the transaction as defined by the
application.

additionalData octet [] OPTIONAL Reserved for future use.

Table 16: Input parameters for startTransaction function

4.4.1.2 StartTransaction – Output parameters

Name Type (OMG IDL) Required? Meaning

transactionNumber unsigned long REQUIRED The value of this parameter represents a
transaction number that has been
assigned by the Secure Element to the
process.

logTime DateTime REQUIRED The value represents the point in time
of the Secure Element when the log
message was created.

serialNumber octet[] REQUIRED This field contains the hash value over
the public key that is used for the
signature creation for transaction logs.

signatureCounter unsigned long REQUIRED The current value of the signature
counter.

signatureValue octet[] OPTIONAL The value represents the signature
value.

Table 17: Output parameters for startTransaction function

4.4.1.3 StartTransaction – Exceptions

Exceptions Meaning

ErrorStartTransactionFailed The execution of the Secure Element functionality to start
a transaction failed.

ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality to
retrieve log message parts has failed.

ErrorStorageFailure Storing of the data of the log message failed.

ErrorSeApiNotInitialized The function startTransaction is invoked although the SE
API has not been initialized.

ErrorTimeNotSet The function startTransaction is invoked although the
time managed by the Secure Element has no defined value.

28 Federal Office for Information Security

Secure Element API Functionality 4

Exceptions Meaning

ErrorCertificateExpired The certificate corresponding to key signing the log
message expired. The exception ErrorCertificateExpired
SHALL be raised after the data of the log message has been
stored.

ErrorSecureElementDisabled The Secure Element has been disabled.

Table 18: Exceptions of the startTransaction function

4.4.1.4 StartTransaction – Detailed description

The following description specifies the behavior of the startTransaction function in detail:

1. The function SHALL invoke the function to start a transaction of the Secure Element and pass on the
clientId (, processType) and processData. In this step, the Secure Element will generate a transaction
number for the transaction. If the execution of the Secure Element function fails, the function SHALL
raise the exception ErrorStartTransactionFailed.

2. Next, the function SHALL retrieve the parts of the log message determined by the Secure Element. If the
execution of this function fails, the exception ErrorRetrieveLogMessageFailed SHALL be raised.

3. The input data and the data of the retrieved log message parts SHALL be stored. If the data has not been
stored successfully, the function SHALL raise the exception ErrorStorageFailure.

4. After the data has been stored successfully, the function SHALL return the current transaction number
(as an output parameter) by transactionNumber, the current signature counter by signatureCounter, the
time of the log message creation by logTime, the hash value over the used public key by serialNumber
and MAY return the created signature value by signatureValue. Additionally, the function SHALL return
the return value EXECUTION_OK to indicate that the execution of the function startTransaction has
been successful.

4.4.2 UpdateTransaction

This function updates an existing transaction.

Federal Office for Information Security 29

4 Secure Element API Functionality

4.4.2.1 UpdateTransaction – Input parameters

Name Type (OMG IDL) Required? Meaning

clientId string REQUIRED Represents the ID of the application that
has invoked the function.

transactionNumber unsigned long REQUIRED This parameter is used to
unambiguously identify the current
transaction.

processData octet [] REQUIRED This parameter represents all the
necessary information about the process
since the initial state of the process or its
last update.

processType string<100> OPTIONAL This parameter is used to identify the
type of the transaction as defined by the
application.

Table 19: Input parameters for updateTransaction function

4.4.2.2 UpdateTransaction – Output parameters

Name Type (OMG IDL) Required? Meaning

logTime DateTime CONDITIONAL The value represents the point in time
of the Secure Element when the log
message was created.

signatureValue octet[] CONDITIONAL The value represents the signature value.

signatureCounter unsigned long CONDITIONAL The current value of the signature
counter.

Table 20: Output parameters for updateTransaction function

30 Federal Office for Information Security

Secure Element API Functionality 4

4.4.2.3 UpdateTransaction – Exceptions

Exception Meaning

ErrorUpdateTransactionFailed The execution of the Secure Element functionality to
update a transaction failed.

ErrorStorageFailure Storing of the data of the log message has failed.

ErrorLogMessageRetrievalFailed Retrieval of the parts of the log message from the Secure
Element failed.

ErrorNoTransaction No transaction is known to be open under the provided
transaction number.

ErrorSeApiNotInitialized The function updateTransaction is invoked although the
SE API has not been initialized.

ErrorTimeNotSet The function updateTransaction is invoked although the
time managed by the Secure Element has no defined value.

ErrorCertificateExpired The certificate corresponding to key signing the log
message expired. The exception ErrorCertificateExpired
SHALL be raised after the data of the log message has been
stored.

ErrorSecureElementDisabled The Secure Element has been disabled.

Table 21: Exceptions of the updateTransaction function

4.4.2.4 UpdateTransaction – Detailed description

The following description specifies the behavior of the updateTransaction (without signed updates) function
in detail:

1. The function SHALL invoke the functionality of the Secure Element to update a transaction and pass on
the clientId, processData (, processType) and the transactionNumber. If the execution of the function
fails, the exception ErrorUpdateExternalTransactionFailed SHALL be raised.

2. The Secure Element SHALL check whether the transactionNumber belongs to an open transaction. If
this is not the case, the function SHALL return the error ErrorNoTransaction and exit.

3. In case of updateTransaction without signed updates:

1. The function SHALL return the return value EXECUTION_OK to indicate that the execution of the
function updateTransaction has been successful.

4. In case of updateTransaction with signed updates:

1. Next, the function SHALL retrieve the parts of the log message determined by the Secure Element. If
the execution of this function fails, the exception ErrorLogMessageRetrievalFailed SHALL be raised.

2. The input data and the data of the retrieved log message parts SHALL be stored. If the data has not
been stored successfully, the function SHALL raise the exception ErrorStorageFailure.

3. After the data has been stored successfully, the function SHALL return the time of the log message
creation by logTime and the signature counter by signatureCounter and MAY return the signature
value by signatureValue. Additionally, the function SHALL return the return value EXECUTION_OK
to indicate that the execution of the function updateTransaction has been successful.

Federal Office for Information Security 31

4 Secure Element API Functionality

4.4.3 FinishTransaction

This function finalizes an existing transaction.

4.4.3.1 FinishTransaction – Input parameters

Name Type (OMG IDL) Required? Meaning

clientId string REQUIRED Represents the ID of the application that
has invoked the function.

transactionNumber unsigned long REQUIRED This parameter is used to
unambiguously identify the current
transaction.

processData octet [] REQUIRED This parameter represents all the
necessary information regarding the
final state of the process.

processType string<100> OPTIONAL This parameter is used to identify the
type of the transaction as defined by the
application.

additionalData octet [] OPTIONAL Reserved for future use.

Table 22: Input parameter of the finishTransaction function

4.4.3.2 FinishTransaction – Output Parameters

Name Type (OMG IDL) Required? Meaning

logTime DateTime REQUIRED The value represents the point in time
of the Secure Element when the log
message was created.

signatureValue octet[] OPTIONAL The value represents the signature
value.

signatureCounter unsigned long REQUIRED The current value of the signature
counter.

Table 23: Output parameter for finishTransaction function

32 Federal Office for Information Security

Secure Element API Functionality 4

4.4.3.3 FinishTransaction – Exceptions

Exception Meaning

ErrorFinishTransactionFailed The execution of the Secure Element functionality to
finish a transaction failed.

ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality to
retrieve the parts of the log message has failed.

ErrorStorageFailure Storing of the log message failed.

ErrorSeApiNotInitialized The function finishTransaction is invoked although the SE
API has not been initialized.

ErrorTimeNotSet The function finishTransaction is invoked although the
time managed by the Secure Element has no defined value.

ErrorCertificateExpired The certificate corresponding to key signing the log
message expired. The exception ErrorCertificateExpired
SHALL be raised after the data of the log message has been
stored.

ErrorSecureElementDisabled The Secure Element has been disabled.

Table 24: Exceptions for finishTransaction function

4.4.3.4 FinishTransaction – Detailed description

The following description specifies the behavior of the finishTransaction function in detail:

1. The function SHALL invoke the functionality of the Secure Element to finish a transaction and pass on
the clientId, the transactionNumber of the process to finish (, the processType) and the processData. If
the execution of the function fails, the exception ErrorFinishTransactionFailed SHALL be raised.

2. Next, the function SHALL retrieve the parts of the log message determined by the Secure Element. If the
execution of this function fails, the exception ErrorRetrieveLogMessageFailed SHALL be raised.

3. The process data, created since the start or the last signed update (cf. chapter 4.3.2.4) of the transaction
and the data of the retrieved log message parts SHALL be stored. If the data has not been stored
successfully, the function SHALL raise the exception ErrorStorageFailure.

4. The function SHALL return the time of the log message creation by logTime, the signature counter by
signatureCounter and MAY return the signature value by signatureValue. Additionally, the SE API SHALL
return the return value EXECUTION_OK to indicate that the execution of the function finishTransaction
has been successful.

4.5 Export Functions

4.5.1 ExportData

This function is used to export the

– log messages, containing the certified data and protocol data,

– certificates that are necessary for the verification of the log messages and

– initialization information.

Federal Office for Information Security 33

4 Secure Element API Functionality

4.5.1.1 ExportData – Input parameters

Name Type (OMG
IDL)

Required? Meaning

clientId string OPTIONAL ID of a client application that has used the API to log
transactions. This filter parameter can be useful if the
Secure Element is used by more than one client
application. If clientId is present, the function SHALL
only return transaction log messages associated with
the given clientId and transactionNumber. Additionally,
the function SHALL return all system log messages and
audit log messages whose signature counters are
contained in the following interval:

Signature counter of the transaction log message for
the start of the transaction and the signature counter
of the transaction log message for the end of the
transaction (inclusive).

transactionNumber unsigned long OPTIONAL If present, the function SHALL only return the
transaction log messages associated with the given
transaction number and, if present, clientId.
Additionally, the function SHALL return all system log
messages and audit log messages whose signature
counters are contained in the following interval:

Signature counter of the transaction log message for
the start of the transaction and the signature
counter of the transaction log message for the end
of the transaction (inclusive).

startTransactionNu
mber

unsigned long4 OPTIONAL If present, the function SHALL only return the log
messages associated within the interval of the smallest
signature counter for startTransactionNumber to the
greatest signature counter for endTransactionNumber
(inclusive). If the parameter clientId is also provided, the
transaction log messages to be returned SHALL
additionally correspond to the clientId.

endTransactionNum
ber

unsigned long4 OPTIONAL If present, the function SHALL only return the log
messages associated within the interval of the smallest
signature counter for startTransactionNumber to the
greatest signature counter for endTransactionNumber
(inclusive). If the parameter clientId is also provided, the
transaction log messages to be returned SHALL
additionally correspond to the clientId.

startDate DateTime4 OPTIONAL If present, the function SHALL only return the log
messages between
– startDate and, if present, endDate (inclusive) or
– startDate and the most current date (inclusive).
If the parameter clientId is also provided, the
transaction log messages to be returned SHALL
additionally correspond to the clientId.
DateTime SHALL be encoded in a format conforming to
chapter 3.1.

34 Federal Office for Information Security

Secure Element API Functionality 4

Name Type (OMG
IDL)

Required? Meaning

endDate DateTime4 OPTIONAL If this parameter is provided, the function SHALL only
return the log messages between
– if present, startDate and endDate (inclusive) or
– the oldest date and endDate (inclusive).
If the parameter clientId is also provided, the
transaction log messages to be returned SHALL
additionally correspond to the clientId.
DateTime SHALL be encoded in a format conforming to
chapter 3.1.

maximumNumberR
ecords

long OPTIONAL If this parameter is provided, and its value is not 0, the
function SHALL only return the log messages if the
number of relevant records is less or equal to the
number of maximum records. Else, an error SHALL be
returned4.
If this parameter is provided and its value is 0, the
function SHALL return all stored log messages.

Table 25: Input parameters for exportData function

4.5.1.2 ExportData – Output parameters

Name Type (OMG IDL) Required? Meaning

exportedData octet []

The content of the octet array SHALL
represent a TAR archive conforming to
chapter 5.1. This TAR archive SHALL contain
the following data:
– certified data and corresponding protocol

data in form of TLV encoded log messages
(see chapter 5.1.2)

– initialization information encoded in a
comma-separated values (CSV) file format
(see chapter 5.1.1)

– certificates of the certificate chains that
belong to the public keys of key pairs that
are currently used or have been used for
the creation of signature values in log
messages. The encoding of the certificates
SHALL conform to the specifications in
chapter 5.1.3.

REQUIRED TAR archive that contains the
selected log messages as well as
the certificates that are needed
for the verification of the log
messages. Additionally, the TAR
archive contains a CSV file with
initialization information.

Table 26: Output parameters for exportData function

4 This optional value allows the client to ensure that only a specific number of log messages is returned by the
export function. If the function returns an error, the calling application can restructure the call and e.g. only
ask for a smaller number of data records next time.

Federal Office for Information Security 35

4 Secure Element API Functionality

4.5.1.3 ExportData – Exceptions

Exception Meaning

ErrorIdNotFound No data found for the provided clientId.

ErrorTransactionNumberNotFound No data found for the provided transactionNumber.

ErrorNoDataAvailable No data found for the provided selection.

ErrorTooManyRecords The amount of requested records exceeds the parameter
maximumNumberRecords.

ErrorParameterMismatch Mismatch in parameters of function.

ErrorSeApiNotInitialized The function exportData is invoked although the SE API has
not been initialized.

Table 27: Exceptions for exportData function

4.5.1.4 ExportData – Detailed Description

The following description specifies the behavior of the exportData function in detail.

1. The function SHALL check the input parameters for validity. If any of the checks fails, the function
SHALL raise the exception ErrorParameterMismatch. This specifically includes the following checks:

1. If transactionNumber has been provided, neither startDate nor endDate SHALL be provided.

2. If startTransactionNumber and endTransactionNumber have been provided, neither startDate nor
endDate SHALL be provided.

3. If provided, startDate and/or endDate MUST be valid date/time values.

4. If startDate and endDate have been provided, endDate MUST lay after startDate.

5. If a startDate and/or endDate have been provided, transactionNumber MUST NOT be provided.

2. If transactionNumber has been provided, the function SHALL check whether any data has been stored
regarding this transactionNumber and, if present, clientId.

1. If no data is available for the transactionNumber, the function SHALL raise the exception
ErrorTransactionNumberNotFound. If no data is available for the clientId, the function SHALL raise
the exception ErrorIdNotFound.

2. Else, the function SHALL return the data that corresponds to the provided transactionNumber and, if
provided, clientId (as an output parameter by exportedData). Additionally, the function SHALL return
all system log messages and audit log messages whose signature counters are contained in the
following interval:

Signature counter of the transaction log message for the start of the transaction and the signature
counter of the transaction log message for the end of the transaction (inclusive).

The function SHALL also return the return value EXECUTION_OK to indicate that the execution of
the function has been successful.

3. If startTransactionNumber and endTransactionNumber have been provided, the function SHALL check
whether any data has been stored for the interval of these two transaction numbers and, if present,
clientId.

36 Federal Office for Information Security

Secure Element API Functionality 4

1. If no data is available for the interval of startTransactionNumber and endTransactionNumber, the
function SHALL raise the exception ErrorTransactionNumberNotFound. If no data is available for the
clientId, the function SHALL raise the exception ErrorIdNotFound.

2. If maximumNumberRecords has been provided and its value is not 0, the function SHALL check
whether the amount of records that have been found is less than or equal to
maximumNumberRecords. If this is not the case, the function SHALL raise the exception
ErrorTooManyRecords.

3. Else, the function SHALL return the data that is associated within the interval of the smallest
signature counter for startTransaction and the greatest signature counter for endTransaction (as an
output parameter) by exportedData. If the clientId is provided, the returned transaction log messages
SHALL correspond to the clientId. Additionally, the function SHALL return the return value
EXECUTION_OK to indicate that the execution of the function has been successful.

4. If startDate and/or endDate have been provided, the function SHALL check whether any data has been
stored for the resulting period and, if present, clientId. Depending on the provision of startDate and/or
endDate, one of the following periods SHALL be considered:

– If a startDate and endDate have been provided, the period between startDate and endDate (inclusive)
SHALL be considered.

– If only startDate has been provided, the period between startDate and the most current date
(inclusive) SHALL be considered.

– If only endDate has been provided, the period between endDate and the oldest date (inclusive) SHALL
be considered.

1. If no data is available for the provided period of time, the function SHALL raise the exception
ErrorNoDataAvailable. If no data is available for the clientId, the function SHALL raise the exception
ErrorIdNotFound.

2. If maximumNumberRecords has been provided and its value is not 0, the function SHALL check
whether the amount of records that have been found is less than or equal to
maximumNumberRecords. If this is not the case, the function SHALL raise ErrorTooManyRecords.

3. Else, the function SHALL return the data that corresponds to the provided period of time (as an
output parameter) by exportedData. If the clientId is provided, the returned transaction log messages
SHALL correspond to the clientId. Additionally, the function SHALL return the return value
EXECUTION_OK to indicate that the execution of the function has been successful.

5. If NEITHER, a transactionNumber nor startDate and endDate have been provided, the function SHALL
check if any data has been stored.

1. If no data is available, the function SHALL return an empty output parameter exportedData.
Additionally, the function SHALL return the return value EXECUTION_OK to indicate that the
execution of the function has been successful.

2. If maximumNumberRecords has been provided and its value is not 0, the function SHALL check
whether the amount of records that have been found is less than or equal to
maximumNumberRecords. If this is not the case, the function SHALL raise ErrorTooManyRecords.

3. Else, the function SHALL return all the stored data (as an output parameter) by exportedData.
Additionally, the function SHALL return the return value EXECUTION_OK to indicate that the
execution of the function has been successful.

Federal Office for Information Security 37

4 Secure Element API Functionality

4.5.2 ExportCertificates

The function exportCertificates exports the certificates of the certificate chains. These certificates belong to
the public keys of the key pairs that are used for the creation of signature values in log messages.

4.5.2.1 ExportCertificates – Input parameters

None

4.5.2.2 ExportCertificates – Output parameters

Name Type (OMG IDL) Required? Meaning

certificates octet[]

The content of the octet array SHALL
represent a TAR archive that SHALL
conform to chapter 5.1. This TAR archive
SHALL contain the certificates of the
certificate chains. These certificates belong
to the public keys that are needed for the
verification of log messages. The encoding
of the certificates SHALL conform to the
specifications in chapter 5.1.3

REQUIRED This parameter SHALL represent a TAR
archive that contains all certificates that
are necessary for the verification of log
messages.

Table 28: Output parameters for exportCertificates function

4.5.2.3 ExportCertificates – Exceptions

Exception Meaning

ErrorExportCertFailed The collection of the certificates for the export failed.

ErrorSeApiNotInitialized The function exportCertificates is invoked although the
SE API has not been initialized.

Table 29: Exceptions for exportCertificates function

4.5.2.4 Detailed description

1. This function SHALL collect the certificates of the certificate chains. These certificates belong to the key
pairs that are used to create signature values contained in log messages. If the collection of the certificates
fails, the function SHALL raise the exception ErrorExportCertFailed and exit the function.

2. The function SHALL return the collected certificates in a TAR archive by the output parameter
certificates. Additionally, the function SHALL return the return value EXECUTION_OK to indicate that
the execution of the function exportCertificates has been successful.

4.5.3 RestoreFromBackup

This function enables the restoring of backup data in the SE API and storage. The backup data includes log
messages and certificates that have been exported by using the exportData function (see chapter 4.5.1). Log
messages and certificates SHALL be passed to the restoreFromBackup function contained in the TAR

38 Federal Office for Information Security

Secure Element API Functionality 4

archive that has been returned during the export of the log messages and certificates. The initialization data
that is also contained in such a TAR archive SHALL NOT be considered in the restoring process.

4.5.3.1 RestoreFromBackup – Input parameters

Name Type (OMG IDL) Required? Meaning

restoreData octet []

The content of the octet array SHALL
represent a TAR archive that has been
exported by the exportData function.
Thus, the TAR archive SHALL
conform to the specifications in
chapter 5.1. The contained log
messages SHALL conform to the
specifications in chapter 5.1.2. The
contained certificates SHALL
conform to the specifications in
chapter 5.1.3.

REQUIRED TAR archive that contains the log
messages and certificates for the restore
process.

Table 30: Input parameters restoreFromBackup function

4.5.3.2 RestoreFromBackup – Output parameters

None.

4.5.3.3 RestoreFromBackup – Exceptions

Exception Meaning

ErrorRestoreFailed The restore process has failed.

ErrorSeApiNotInitialized The function restoreFromBackup is invoked although the
SE API has not been initialized.

ErrorUserNotAuthorized The user who has invoked the function
restoreFromBackup is not authorized to execute this
function.

ErrorUserNotAuthenticated The user who has invoked the function
restoreFromBackup has not the status authenticated.

Table 31: Exceptions of restoreFromBackup function

4.5.3.4 RestoreFromBackup – Detailed description

The following description specifies the behavior of the restoreFromBackup function in detail:

1. The function SHALL check if the user that has invoked the function has the status authenticated (cf.
chapter 4.2). If the status is not authenticated, the function SHALL raise the exception
ErrorUserNotAuthenticated and exit the function.

2. If the user has the status authenticated, the function SHALL check in the corresponding role (cf. chapter
4.2) if the user is authorized to execute the function. If the user is not authorized, the function SHALL
raise the exception ErrorUserNotAuthorized and exit the function.

Federal Office for Information Security 39

4 Secure Element API Functionality

3. The function SHALL store the data of the passed log messages in the storage. If an imported log message
has a file name that already exists in the storage, a counter SHALL be appended to the file name of the
imported log message (see chapter 5.1.2). If the storing of the passed log message data fails, the function
SHALL raise the exception ErrorRestoreFailed and exit the function. In this case, it SHALL be ensured
that the storage is left in a consistent state.

4. If no certificate of the same file name already exists, the function SHALL store the passed certificates. If a
certificate has not been stored successfully, the function SHALL raise the exception ErrorRestoreFailed
and exit the function. In this case, it SHALL be ensured that the SE API is left in a consistent state.

5. If the restoring has been successful, the function SHALL return EXECUTION_OK.

40 Federal Office for Information Security

Secure Element API Functionality 4

4.5.4 ReadLogMessage

This function enables the reading of a log message that bases on the last log message parts that have been
produced and processed by the Secure Element.

4.5.4.1 ReadLogMessage – Input parameters

None

4.5.4.2 ReadLogMessage – Output parameters

Name Type (OMG IDL) Required? Meaning

logMessage octet [] REQUIRED Contains the last log message that the
Secure Element has determined.

Table 32: Output parameters for the readLogMessage function

4.5.4.3 ReadLogMessage – Exceptions

Exception Meaning

ErrorNoLogMessage No log message parts found.

ErrorReadingLogMessage Error while retrieving the parts of the log message.

ErrorSeApiNotInitialized The function readLogMessage is invoked although the SE
API has not been initialized.

ErrorSecureElementDisabled The Secure Element has been disabled.

Table 33: Exceptions for readLogMessage function

4.5.4.4 ReadLogMessage – Detailed description

The following description specifies the behavior of the readLogMessage function in detail:

1. The function SHALL retrieve the parts of the log message determined by the Secure Element most
recently. If no log message parts are found in the Secure Element, the exception ErrorNoLogMessage
SHALL be raised and the function SHALL be exited. If the retrieving of the log message parts fails, the
exception ErrorReadingLogMessage SHALL be raised and the function SHALL be exited.

2. The retrieved log message parts SHALL be combined into a complete log message. This log message
SHALL be returned to the application over the output parameter logMessage. Additionally, the SE API
SHALL return the return value EXECUTION_OK to indicate that the execution of the function
readLogMessage has been successful.

Federal Office for Information Security 41

4 Secure Element API Functionality

4.5.5 ExportSerialNumbers

The function exportSerialNumbers exports the serial number(s) of the SE API. A serial number is a hash
value of a public key that belongs to a key pair, whose private key is used to create signature values of log
messages.

4.5.5.1 ExportSerialNumbers – Input parameters

None.

4.5.5.2 ExportSerialNumbers – Output parameters

Name Type (OMG IDL) Required? Meaning

serialNumbers octet []
The data of the octet
array SHALL conform
to the TLV structure
defined in chapter 9.

REQUIRED Serial number(s) of the SE API.

Table 34: Output parameters for exportSerialNumbers function

4.5.5.3 ExportSerialNumbers – Exceptions

Exception Meaning

ErrorExportSerialNumbersFailed The collection of the serial number(s) failed.

ErrorSeApiNotInitialized The function exportSerialNumbers is invoked although
the SE API has not been initialized.

Table 35: Exceptions for exportSerialNumbers function

4.5.5.4 ExportSerialNumbers – Detailed description

The following description specifies the behavior of the function exportSerialNumbers in detail:

1. The function exportSerialNumbers SHALL collect the serial number(s) of the SE API. If the collection of
serial numbers fails, the function SHALL raise the exception ErrorExportSerialNumbersFailed and exit
the function.

2. If the collection of the serial number(s) has been successful, the function SHALL return the determined
serial number(s) over the output parameter serialNumbers. Additionally, the function SHALL return the
return value EXECUTION_OK to indicate that the execution of the function has been successful.

4.6 Utility Functions

4.6.1 GetMaxNumberOfClients

The function getMaxNumberOfClients can be used to get the maximal number of clients that can use the
functionality for logging transactions of the SE API simultaneously.

42 Federal Office for Information Security

Secure Element API Functionality 4

4.6.1.1 GetMaxNumberOfClients – Input parameters

None.

4.6.1.2 GetMaxNumberOfClients – Output parameters

Name Type (OMG IDL) Required? Meaning

maxNumberClients unsigned long REQUIRED Represents the maximum number of
clients that can use the functionality of
the SE API simultaneously.

Table 36: Output parameters for getMaxNumberOfClients function

4.6.1.3 GetMaxNumberOfClients – Exceptions

Exception Meaning

ErrorGetMaxNumberOfClientsFailed The determination of the maximum number of clients
that could use the SE API simultaneously failed.

ErrorSEAPINotInitialized The function getMaxNumberOfClientsg is invoked
although the SE API has not been initialized.

ErrorSecureElementDisabled The Secure Element has already been disabled.

Table 37: Exceptions for the getMaxNumberOfClientsg function

4.6.1.4 GetMaxNumberOfClients – Detailed description

The following description specifies the behavior of the function getMaxNumberOfClients in detail:

1. The function SHALL determine the maximum number of clients that could use the SE API
simultaneously. If the determination of the number of clients fails, the function SHALL raise the
exception ErrorGetMaxNumberOfClientsFailed and exit the function.

2. If the determination of the number of clients has been successful, the function SHALL return the number
by usage of the output parameter maxNumberClients. Additionally, the function SHALL return the
return value EXECUTION_OK to indicate that the execution of the function has been successful.

4.6.2 GetCurrentNumberOfClients

The function getCurrentNumberOfClients can be used to get the number of clients that are currently using
the functionality for logging transactions of the SE API.

4.6.2.1 GetCurrentNumberOfClients – Input parameters

None.

Federal Office for Information Security 43

4 Secure Element API Functionality

4.6.2.2 GetCurrentNumberOfClients – Output parameters

Name Type (OMG IDL) Required? Meaning

currentNumberClients unsigned long REQUIRED Represents the number of clients that
are currently using the functionality of
the SE API.

Table 38: Output parameters for getCurrentNumberOfClients function

4.6.2.3 GetCurrentNumberOfClients – Exceptions

Exception Meaning

ErrorGetCurrentNumberOfClientsFailed The determination of the current number of clients using
the SE API failed.

ErrorSEAPINotInitialized The function getCurrentNumberOfClients is invoked
although the SE API has not been initialized.

ErrorSecureElementDisabled The Secure Element has already been disabled.

Table 39: Exceptions for getCurrentNumberOfClients function

4.6.2.4 GetCurrentNumberOfClients – Detailed description

The following description specifies the behavior of the function getCurrentNumberOfClients in detail:

1. The function SHALL determine the number of clients that are currently using the SE API. If the
determination of the current number of clients fails, the function SHALL raise the exception
ErrorGetCurrentNumberOfClientsFailed and exit the function.

2. If the determination of the current number of clients has been successful, the function SHALL return the
number by usage of the output parameter currentNumberClients. Additionally, the function SHALL
return the return value EXECUTION_OK to indicate that the execution of the function has been
successful.

4.6.3 GetMaxNumberOfTransactions

The function getMaxNumberOfTransactions can be used to obtain the maximal number of simultaneously
opened transactions that can be managed by the SE API.

4.6.3.1 GetMaxNumberOfTransactions – Input parameters

None.

4.6.3.2 GetMaxNumberOfTransactions – Output parameters

Name Type (OMG IDL) Required? Meaning

maxNumberTransactions unsigned long REQUIRED Maximum number of simultaneously
opened transactions that can be
managed by the SE API.

Table 40: Output parameters for getMaxNumberOfTransactions function

44 Federal Office for Information Security

Secure Element API Functionality 4

4.6.3.3 GetMaxNumberOfTransactions – Exceptions

Exception Meaning

ErrorGetMaxNumberTransactionsFailed The determination of the maximum number of
transactions that can be managed simultaneously failed.

ErrorSeApiNotInitialized The function getMaxNumberOfTransactions is invoked
although the SE API has not been initialized.

ErrorSecureElementDisabled The Secure Element has already been disabled.

Table 41: Exceptions for getMaxNumberOfTransactions function

4.6.3.4 GetMaxNumberOfTransactions – Detailed description

The following description specifies the behavior of the function getMaxNumberOfTransactions in detail:

1. The function SHALL determine the maximal number of transactions that can be managed by the SE API
simultaneously. If the determination of the maximal number of transactions fails, the function SHALL
raise the exception ErrorGetMaxNumberTransactionsFailed and exit the function.

2. If the determination of the maximal number of transaction is successful, the function SHALL return the
number over the output parameter maxNumberTransactions. Additionally, the function SHALL return
the return value EXECUTION_OK to indicate that the execution of the function has been successful.

4.6.4 GetCurrentNumberOfTransactions

The function getCurrentNumberOfTransactions can be used to obtain the number of open transactions that
are currently managed by the SE API.

4.6.4.1 GetCurrentNumberOfTransactions – Input parameters

None.

4.6.4.2 GetCurrentNumberOfTransactions – Output parameters

Name Type (OMG IDL) Required? Meaning

currentNumberTransactions unsigned long REQUIRED Represents the number of open
transactions that are currently managed
by the SE API.

Table 42: Output parameters for getCurrentNumberOfTransactions function

Federal Office for Information Security 45

4 Secure Element API Functionality

4.6.4.3 GetCurrentNumberOfTransactions – Exceptions

Exception Meaning

ErrorGetCurrentNumberOfTransactionsFailed The determination of the number of open transactions
that are currently managed by the SE API failed.

ErrorSeApiNotInitialized The function getCurrentNumberOfTransactions is
invoked although the SE API has not been initialized.

ErrorSecureElementDisabled The Secure Element has already been disabled.

Table 43: Exceptions for getCurrentNumberOfTransactions function

4.6.4.4 GetCurrentNumberOfTransactions – Detailed description

The following description specifies the behavior of the function getCurrentNumberOfTransactions in
detail:

1. The function SHALL determine the number of transactions that are currently opened. If the
determination of this number fails, the function SHALL raise the exception
ErrorGetCurrentNumberOfTransactionsFailed and exit the function.

2. If the determination of the number of currently opened transactions is successful, the function SHALL
return the number by usage of the output parameter currentNumberTransactions. Additionally, the
function SHALL return the return value EXECUTION_OK to indicate that the execution of the function
has been successful.

4.6.5 GetSupportedTransactionUpdateVariants

The function getSupportedTransactionUpdateVariants can be used to obtain information how updates of
transactions are performed. In this context, the following variants for updating transactions can be
supported:

1. Creation of a signature value for the application data and protocol data during every update of a
transaction.

2. No creation of a signature value for the application data and protocol data during an update of a
transaction. The data of the process is concatenated during the updates and the signature value is created
during the finalization of the transaction.

3. Support of both update variants, mentioned above.

4.6.5.1 GetSupportedTransactionUpdateVariants – Input parameters

None.

46 Federal Office for Information Security

Secure Element API Functionality 4

4.6.5.2 GetSupportedTransactionUpdateVariants – Output parameters

Name Type (OMG IDL) Required? Meaning

supportedUpdateVariants enum UpdateVariants{
 signed,
 unsigned,
 signedAndUnsigned
}

REQUIRED Represents the supported variant (s) for
updating a transaction.

Table 44: Output parameters for getSupportedTransactionUpdateVariants function

4.6.5.3 GetSupportedTransactionUpdateVariants – Exceptions

Exception Meaning

ErrorGetSupportedUpdateVariantsFailed The identification of the supported variant(s) for updating
transactions failed.

ErrorSeApiNotInitialized The function getSupportedTransactionUpdateVariants is
invoked although the SE API has not been initialized.

ErrorSecureElementDisabled The Secure Element has been disabled.

Table 45: Exceptions for getSupportedTransactionUpdateVariants function

4.6.5.4 GetSupportedTransactionUpdateVariants – Detailed description

The function getSupportedTransactionUpdateVariants SHALL identify the supported variants to update
transactions. The following description specifies the behavior of the function
getSupportedTransactionUpdateVariants in detail:

1. If the identification of the supported update variant(s) fails, the function SHALL raise the exception
ErrorGetSupportedUpdateVariantsFailed and exit the function.

2. If the identification of the supported update variant(s) has been successful, the function SHALL return the
information regarding the supported update variants over the output parameter
supportedUpdateVariants. Additionally, the function SHALL return the return value EXECUTION_OK to
indicate that the execution of the function has been successful.

4.6.6 DeleteStoredData

The function deleteStoredData deletes all data that is stored in the storage.

4.6.6.1 DeleteStoredData – Input parameters

None.

4.6.6.2 DeleteStoredData – Output parameters

None.

Federal Office for Information Security 47

4 Secure Element API Functionality

4.6.6.3 DeleteStoredData – Exceptions

Exception Meaning

ErrorDeleteStoredDataFailed The deletion of the data from the storage failed.

ErrorUnexportedStoredData The deletion of data from the storage failed because the
storage contains data that has not been exported.

ErrorSeApiNotInitialized The function deleteStoredData is invoked although the SE
API has not been initialized.

ErrorUserNotAuthorized The user who has invoked the function deleteStoredData
is not authorized to execute this function.

ErrorUserNotAuthenticated The user who has invoked the function deleteStoredData
has not the status authenticated.

Table 46: Exceptions for deleteStoredData function

4.6.6.4 DeleteStoredData – Detailed description

The following description specifies the behavior of the function deleteStoredData in detail:

1. The function SHALL check if the user that has invoked the function has the status authenticated (cf.
chapter 4.2). If the status is not authenticated, the function SHALL raise the exception
ErrorUserNotAuthenticated and exit the function.

2. If the user has the status authenticated, the function SHALL check in the corresponding role (cf. chapter
4.2) if the user is authorized to execute the function. If the user is not authorized, the function SHALL
raise the exception ErrorUserNotAuthorized and exit the function.

3. The function SHALL delete all stored data from the storage. The function SHALL ensure that only such
data is deleted that has already been exported. If the deletion of the complete secured data fails because

1. the storage contains data that has not been exported, the function SHALL raise the exception
ErrorUnexportedStoredData and exit the function.

2. of any other cause, the function SHALL raise the exception ErrorDeleteStoredDataFailed and exit the
function.

For both of the above mentioned cases of failure it SHALL be ensured that the storage is left in a
consistent state.

4. If the complete stored data has been deleted, the function SHALL return the value EXECUTION_OK to
indicate that the execution of the function has been successful.

4.7 Authentication

4.7.1 AuthenticateUser

The function authenticateUser enables an authorized user or system to authenticate to the SE API for the
usage of restricted SE API functions (see chapter 4.2).

48 Federal Office for Information Security

Secure Element API Functionality 4

4.7.1.1 AuthenticateUser – Input parameters

Name Type (OMG IDL) Required? Meaning

userId string REQUIRED Represents the ID of the user who or
application that wants to be
authenticated.

pin octet [] REQUIRED Represents the PIN for the
authentication.

Table 47: Input parameters authenticateUser function

4.7.1.2 AuthenticateUser – Output parameters

Name Type (OMG IDL) Required? Meaning

authenticationResult enum
AuthenticationResult{
 ok,
 failed,
 pinIsBlocked,
 unknownUserId
}

REQUIRED Represents the result of the
authentication.

The value ok SHALL indicate that the
authentication has been successful.
The value failed SHALL indicate that the
authentication has failed.
The value pinIsBlocked SHALL indicate
that the userId was already blocked
before the authentication attempt.
The value unknownUserId SHALL
indicate that the passed userId is not
managed by the SE API.

remainingRetries short REQUIRED Represents the number of remaining
retries for entering a PIN.

Table 48: Output parameters authenticateUser function

4.7.1.3 AuthenticateUser – Exceptions

Exception Meaning

ErrorSigningSystemOperationDataFailed The determination of the log message parts for the system
operation data by the Secure Element failed.

ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality to
retrieve log message parts has failed.

ErrorStorageFailure Storing of the data of the log message failed.

ErrorSecureElementDisabled The Secure Element has already been disabled.

Table 49: Exceptions for authenticateUser function

4.7.1.4 AuthenticateUser – Detailed description

The following description specifies the behavior of the function authenticateUser in detail:

1. The function SHALL set the value of the output parameter authenticationResult to the value failed.

Federal Office for Information Security 49

4 Secure Element API Functionality

2. The function SHALL check if the value for the passed userId is managed by the SE API. If the userId does
not exist, the function SHALL set the value of the output parameter authenticationResult to the value
unknownUserId. Additionally, the function SHALL set the value of the output parameter
remainingRetries to the value -1. The function SHALL perform the tasks defined in chapter 4.7.1.4.1 to
log the failed authentication attempt. These tasks include the termination of the function
authenticateUser.

3. The function SHALL check for the userId if the corresponding PIN retry counter has a value greater than
0. The PIN retry counter SHALL represent the number of remaining attempts for entering a wrong PIN. If
the value is not greater than 0, the function SHALL set the value for the output parameter
authenticationResult to pinIsBlocked. Additionally, the value for the output parameter
remainingRetries SHALL be set to the value of the PIN retry counter. The function SHALL perform the
tasks defined in chapter 4.7.1.4.1 to log the failed authentication attempt. These tasks include the
termination of the function authenticateUser.

4. If the PIN retry counter is greater than 0, the function SHALL decrement the value of the PIN retry
counter.

5. The function SHALL check the passed PIN. If the PIN is not correct, the function SHALL set the value of
the output parameter remainingRetries to the value of the PIN retry counter. Subsequently, the function
SHALL perform the tasks defined in chapter 4.7.1.4.1 to log the failed authentication attempt. These tasks
include the termination of the function authenticateUser.

6. If the PIN is correct, the function SHALL set the authentication status for the userId to authenticated.
Additionally, the function SHALL set the value for the PIN retry counter to the defined maximum value
for retries. The function SHALL set the value of the output parameter remainingRetries to the value of
the PIN retry counter. The value of the output parameter authenticationResult SHALL be set to ok.

7. The function SHALL invoke the functionality of the Secure Element to determine the log message parts
for the system operation data of the successful authentication attempt. If the execution of this Secure
Element functionality fails, the function authenticateUser SHALL raise the exception
ErrorSigningSystemOperationDataFailed and exit the function.

8. The function SHALL retrieve the parts of the log message determined by the Secure Element. If the
retrieval of the log message parts fails, the function SHALL raise the exception
ErrorRetrieveLogMessageFailed and exit the function.

9. The function SHALL store the data of the previously retrieved log message parts on the storage medium.
If the data has not been stored successfully, the function SHALL raise the exception ErrorStorageFailure
and exit the function.

10. The function SHALL return the return value EXECUTION_OK to indicate that the execution of the
function authenticateUser has been executed successful.

4.7.1.4.1 Detailed description of actions to log a failed authentication attempt

The following tasks SHALL be performed by the function authenticateUser to log a failed authentication
attempt:

1. The function SHALL invoke the functionality of the Secure Element to determine the log message
parts for the system operation data for the failed authentication attempt. If the execution of this
Secure Element functionality fails, the function authenticateUser SHALL raise the exception
ErrorSigningSystemOperationDataFailed and exit the function.

2. The function SHALL retrieve the parts of the log message determined by the Secure Element. If the
retrieval of the log message parts fails, the function SHALL raise the exception
ErrorRetrieveLogMessageFailed.

50 Federal Office for Information Security

Secure Element API Functionality 4

3. The function SHALL store the data of the previously retrieved log message parts on the storage
medium. If the data has not been stored successfully, the function SHALL raise the exception
ErrorStorageFailure and exit the function.

4. The function SHALL return the return value AUTHENTICATION_FAILED to indicate that the
authentication has not been successful.

4.7.2 LogOut

The function logOut enables the log out of an authenticated user or application from the SE API.

4.7.2.1 LogOut – Input parameters

Name Type (OMG IDL) Required? Meaning

userId string REQUIRED Represents the ID of the user who or
application that wants to log out from
the SE API.

Table 50: Input parameters logOut function

4.7.2.2 LogOut – Output parameters

None.

4.7.2.3 LogOut– Exceptions

Exception Meaning

ErrorUserIdNotManaged The passed userId is not managed by the SE API.

ErrorSigningSystemOperationDataFailed The determination of the log message parts for the system
operation data by the Secure Element failed.

ErrorUserIdNotAuthenticated The passed userId has not the status authenticated.

ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality to
retrieve log message parts has failed.

ErrorStorageFailure Storing of the data of the log message failed.

ErrorSecureElementDisabled The Secure Element has already been disabled.

Table 51: Exceptions for logOut function

4.7.2.4 LogOut – Detailed description

The following description specifies the behavior of the function logOut in detail:

1. The function SHALL check if the value for the passed userId is managed by the SE API. If the userId does
not exist, the function SHALL raise the exception ErrorUserIdNotManaged and exit the function.

2. The function SHALL check if the passed userId has the status “authenticated”. If the status is not
authenticated, the function SHALL raise the exception ErrorUserIdNotAuthenticated and exit the
function.

3. Else, the function SHALL set the status for the userId to “not authenticated”.

Federal Office for Information Security 51

4 Secure Element API Functionality

4. The function SHALL invoke the functionality of the Secure Element to determine the log message parts
for the system operation data regarding the log-out. If the execution of this Secure Element functionality
fails, the function SHALL raise the exception ErrorSigningSystemOperationDataFailed and exit the
function.

5. The function SHALL retrieve the parts of the log message determined by the Secure Element. If the
retrieval of the log message parts fails, the function SHALL raise the exception
ErrorRetrieveLogMessageFailed and exit the function.

6. The function SHALL store the data of the previously retrieved log message parts on the storage medium.
If the data has not been stored successfully, the function SHALL raise the exception ErrorStorageFailure
and exit the function.

7. The function SHALL return the return value EXECUTION_OK to indicate that the function logOut has
been executed successful.

4.7.3 UnblockUser

The function unblockUser enables an unblocking of a PIN for the authentication of authorized users (see
chapter 4.2). Before the start of the unblocking process, users SHALL be authenticated by the SE API by their
PUK. After a successful authentication, users SHALL be able to change their PIN.

4.7.3.1 UnblockUser – Input parameters

Name Type (OMG IDL) Required? Meaning

userId string REQUIRED Represents the ID of the user who or
application that wants to unblock the
corresponding PIN.

puk octet [] REQUIRED Represents the PUK of the
user/application.

newPin octet [] REQUIRED Represents the new PIN for the
user/application.

Table 52: Input parameters unblockUser function

52 Federal Office for Information Security

Secure Element API Functionality 4

4.7.3.2 UnblockUser – Output parameters

Name Type (OMG IDL) Required? Meaning

unblockResult enum UnblockResult{
 ok,
 failed,
 unknownUserId,
 error
}

REQUIRED Represents the result of the
authentication.

The value ok SHALL indicate that the
authentication has been successful.
The value failed SHALL indicate that the
unblocking has failed.
The value unknownUserId SHALL
indicate that the passed userId is not
managed by the SE API.
The value error SHALL indicate that an
error has occurred during the execution
of the function unblockUser.

Table 53: Output parameters unblockUser function

4.7.3.3 UnblockUser– Exceptions

Exception Meaning

ErrorSigningSystemOperationDataFailed The determination of the log message parts for the system
operation data by the Secure Element has failed.

ErrorRetrieveLogMessageFailed The execution of the Secure Element functionality to
retrieve log message parts has failed.

ErrorStorageFailure Storing of the data of the log message failed.

ErrorSecureElementDisabled The Secure Element has already been disabled.

Table 54: Exceptions for unblockUser function

4.7.3.4 UnblockUser – Detailed description

The following description specifies the behavior of the function unblockUser in detail:

1. The function SHALL set the value of the output parameter unblockResult to the value failed.

2. The function SHALL check if the value for the passed userId is managed by the SE API. If the userId does
not exist, the function SHALL set the value of the output parameter unblockResult to the value
unknownUserId. Additionally, the function SHALL perform the tasks defined in chapter 4.7.3.4.1 to log
the failed unblocking attempt. These actions include the termination of the function unblockUser.

3. The function SHALL perform countermeasures to password guessing attacks.

4. The function SHALL check if the PUK is correct for the userId. If the PUK is not correct, the function
SHALL perform the actions defined in chapter 4.7.3.4.1 to log the failed unblocking attempt. These tasks
include the termination of the function unblockUser.

5. If the PUK is correct, the function SHALL perform the following tasks within one atomic transaction:

1. The function SHALL substitute the current PIN for the userId by the newPin. If this substitution fails,
the function SHALL set the value of the output parameter unblockResult to error. Additionally, the
function SHALL perform the tasks defined in chapter 4.7.3.4.1 to log the failed unblocking attempt.

Federal Office for Information Security 53

4 Secure Element API Functionality

These tasks include the termination of the function unblockUser. It SHALL be ensured that the SE API
is left in a consistent state.

2. The function SHALL set the PIN retry counter to the defined maximum value for retries. If the setting
of this value fails, the function SHALL set the value of the output parameter unblockResult to error.
Additionally, the function SHALL perform the tasks defined in chapter 4.7.3.4.1 to log the failed
unblocking attempt. These tasks include the termination of the function unblockUser. It SHALL be
ensured that the SE API is left in a consistent state.

6. The function SHALL set the value of the output parameter unblockResult to the value ok.

7. The function SHALL invoke the functionality of the Secure Element to create the log message parts for
the system operation data for the successful unblocking attempt. If the execution of this Secure Element
functionality fails, the function unlockUser SHALL raise the exception
ErrorSigningSystemOperationDataFailed and exit the function.

8. The function SHALL retrieve the parts of the log message determined by the Secure Element. If the
retrieval of the log message parts fails, the function SHALL raise the exception
ErrorRetrieveLogMessageFailed and exit the function.

9. The function SHALL store the data of the previously retrieved log message parts on the storage medium.
If the data has not been stored successfully, the function SHALL raise the exception ErrorStorageFailure
and exit the function.

10. The function SHALL return the return value EXECUTION_OK to indicate that the execution of the
function unblockUser has been executed successful.

4.7.3.4.1 Detailed description of actions for logging a failed unblocking attempt

The following actions SHALL be performed by the function unblockUser to log a failed unblocking attempt:

1. The function SHALL invoke the functionality of the Secure Element for creating the log message parts
for the system operation data regarding a failed unblocking attempt.

2. The function SHALL retrieve the parts of the log message determined by the Secure Element. If the
retrieval of the log message parts fails, the function SHALL raise the exception
ErrorRetrieveLogMessageFailed.

3. The function SHALL store the data of the previously retrieved log message parts on the storage
medium. If the data has not been stored successfully, the function SHALL raise the exception
ErrorStorageFailure and exit the function.

4. The function SHALL return the return value UNBLOCK_FAILED to indicate that the unblocking of
the user PIN has not been successful.

54 Federal Office for Information Security

Export Formats 5

5 Export Formats

5.1 TAR and TLV Export

If the export information is requested, the requested information SHALL be exported into a [POSIX.1-1988]
compliant TAR archive that in turn contains the following files:

– the initialization information

– the log messages

– the certificate(s) that are needed to verify the log messages

These different types of files are considered in the chapters 5.1.1 to 5.1.3.

Further definitions regarding the TAR archive are contained in Appendix C in chapter 8.

5.1.1 Initialization Information File

The TAR file SHALL contain a file named info.csv. This coma separated value (CSV) text file SHALL follow the
structure shown in Text 4.

“description:“, $1, “manufacturer:”, $2, ”version:”, $3

Text 4: content of info.csv

The variables $1 to $3 shall be replaced with the following values:

– $1 to be replaced by the description of the SE API, set during the manufacturing process or by the
initialization function.

– $2 to be replaced by the manufacturer information, set during the manufacturing process of the Secure
Element,

– $3 to be replaced by the version information, set during the manufacturing process of the Secure
Element.

Line endings in the text file SHALL be encoded in UNIX style (i.e. Line feed, '\n', 0x0A) and the delimiter
SHALL be ‘,’ (a comma).

5.1.2 Log Messages Files

Log messages files can be separated into the following types:

– Transaction log messages to log different phases of transactions

– System log messages to log the execution of particular system operations

– Audit log messages to log audit data of auditable events that is created by the Secure Element

The files for transaction log messages are described in chapter 5.1.2.1. System log message files are
considered in chapter 5.1.2.2. The files for audit log messages are described in chapter 5.1.2.3.

Federal Office for Information Security 55

5 Export Formats

5.1.2.1 Transaction Log Message Files

In a TAR archive, the names of transaction log message files SHALL conform to the structure defined in text
5.

DATE-FORMAT_DATE_Sig-SIGNATURE-COUNTER_LOG_No-TRANSACTION_TYPE_Client-CLIENT-
ID_Fc-FILE-COUNTER.log

Text 5: Structure of file names for transaction log messages

The capitalized parts of the file name that are separated by an underscore represent particular information
of a log message (see text 5). Theses parts SHALL be replaced by the corresponding values according to table
55. If the name for a file name part or a predefined value consists of several terms, these terms are connected
by a minus sign. To facilitate the identification of the values for the signature counter, transaction number,
client id and an optional file counter in the file name, this information SHALL be marked by an explaining
prefix (see italic content in text 5). A prefix SHALL be connected by a minus sign to the corresponding
information. A transaction log message file SHALL have the file extension log . The file extension SHALL be
separated by a point from the rest of the file name.

Part of file name Description

DATE-FORMAT SHALL represent the type of the value for DATE conforming to the formats
defined in chapter 3.1. These time formats SHALL be represented by the
following values:
– Gent: ASN. 1 GeneralizedTime
– Utc: ASN.1 UTCTime
– Unixt: Unix Time

DATE SHALL represent the creation date/time of the log message file. The format
SHALL be conform a format from chapter 3.1.

SIGNATURE-COUNTER SHALL represent the value of the signature counter when the signature value
of the log message has been created. The signature counter value SHALL be
marked by the prefix Sig (see text 5). This prefix SHALL be connected to the
signature counter value by a minus sign.

LOG SHALL constitute the information that the log message has been created for
logging a phase of a transaction. This information SHALL be represented by
the predefined value Log-Tra.

TRANSACTION SHALL represent the number of the transaction that has been assigned by the
Secure Element. The transaction number value SHALL be marked by the
prefix No (see text 5). This prefix SHALL be connected to the transaction
number value by a minus sign.

TYPE This part of the file name SHALL indicate by predefined values whether the
log message in the file is of type Start, Update or Finish.
– Start SHALL be used if the file corresponds to the start of a transaction

(logging in the context of the function startTransaction)
– Update SHALL be used if the file corresponds to a signed update of a

transaction (logging in the context of the function updateTransaction)
– Finish SHALL be used if the file corresponds to the finalization of a

transaction (logged in the context of the function finishTransaction)

56 Federal Office for Information Security

Export Formats 5

Part of file name Description

CLIENT-ID This part of the file name SHALL identify the client that has initiated the
logging of a transaction phase. The value for the clientId SHALL be marked by
the prefix Client. This prefix SHALL be connected to the CLIENT-ID value by
a minus sign (see text 5).

FILE-COUNTER This part of the file name MAY be present. It MUST only be present, if one or
more files of the same name already exist. In this context, file names are
compared without considering values for FILE-COUNTER. In the case of
equal file names, a value for FILE-COUNTER SHALL be contained in the file
name. This value SHALL represent the number of already existing files of the
same name. The value for FILE-COUNTER SHALL be marked by the prefix Fc.
This prefix SHALL be connected to the FILE-COUNTER value by a minus sign
(see text 5).

Table 55: Parts of the file names for transaction log messages in export tar archive

The contents of the file SHALL be structured as defined in table 2 and 4.

Text 6 provides an example for the file name of a transaction log message for the start of a transaction. Thus,
the file name part LOG has been replaced by the predefined value Log-Tra (see table 55). TYPE has been
substituted by the predefined value Start. The creation date/time of the log message is represented by the
value 181109153045Z. The value Utc for DATE_FORMAT indicates that the format of this date/time value
conforms to the type UTCTime from ASN.1 (see chapter 3.1). The value 1572 for the signature counter is
marked by the prefix Sig. The transaction number has the value 713 that is marked by the prefix No. The
client id has the value 03. It is marked by the prefix Client. The absence of a value for FILE-COUNTER
indicates that no files of the same name are existing.

Utc_181109153045Z_Sig-1572_Log-Tra_No-713_Start_Client-03.log

Text 6: Example for a file name of a transaction log message

5.1.2.2 System Log Message Files

System log message files in a TAR archive SHALL have file names that conform to the structure defined in
text 7. The capitalized parts of the file name that are separated by an underscore represent particular
information of a system log message (see text 7). Theses parts SHALL be replaced by the corresponding
values according to table 56. If the name for a file name part or a predefined value consists of several terms,
these terms are connected by a minus sign. To facilitate the identification of the values for the signature
counter and an optional file counter in the file name, this information SHALL be marked by the prefix Sig
(see italic content in text 7). A prefix SHALL be connected by a minus sign to the corresponding value. A
system log message file SHALL have the file extension log. The file extension SHALL be separated by a point
from the rest of the file name.

DATE-FORMAT_DATE_Sig-SIGNATURE-COUNTER_LOG_TYPE_Fc-FILE-COUNTER.log

Text 7: Structure of file names for system log messages

Federal Office for Information Security 57

5 Export Formats

Part of file name Description

DATE-FORMAT SHALL represent the type of the value for DATE conforming to the formats
defined in chapter 3.1. These time formats SHALL be represented by the
following values:
– Gent: ASN. 1 GeneralizedTime
– Utc: ASN.1 UTCTime
– Unixt: Unix Time

DATE SHALL represent the date/time of the creation of the log message file. The
format SHALL be conform to a format from chapter 3.1.

SIGNATURE-COUNTER SHALL represent the value of the signature counter when the signature value
of the log message has been created. The signature counter value SHALL be
marked by the prefix Sig (see text 7). This prefix SHALL be connected to the
signature counter value by a minus sign.

LOG SHALL constitute the information that the log message has been created for
logging the execution of a system operation. This information SHALL be
represented by the predefined value Log-Sys.

TYPE This part of the file name SHALL identify the system operation that has been
logged. If a log message corresponds to the functionality for
– the initialization of the SE API, the value of TYPE SHALL be Initialize.
– updating the time that is managed by the Secure Element, the value of

TYPE SHALL be UpdateTime.
– the deactivation of the Secure Element, the value of TYPE SHALL be

DisableSecureElement.
– the authentication of a user/application to the SE API, the value of TYPE

SHALL be AuthenticateUser.
– for the log out of an authenticated user/application, the value of TYPE

SHALL be LogOut.
– for unblocking a user, the value of TYPE SHALL be UnblockUser.

FILE-COUNTER This part of the file name MAY be present. It MUST be present, if one or more
files of the same name already exist. In this context, file names are compared
without considering values for FILE-COUNTER. In the case of equal file
names, a value for FILE-COUNTER SHALL be contained in the file name. This
value SHALL represent the number of already existing files of the same name.
The value for FILE-COUNTER SHALL be marked by the prefix Fc. This prefix
SHALL be connected to the FILE-COUNTER value by a minus sign (see text 7).

Table 56: Parts of the file names of system log messages in export tar archive

The contents of the file SHALL be structured as defined in table 2 and 6.

Text 8 shows an example for the name of a system log message file. Thus, the file name part LOG has been
replaced by the value Log-Sys. The value UpdateTime for the file name part TYPE indicates that the system
log message corresponds to an update of the time managed by the Secure Element. It can be seen that the
value 1743 for the signature counter is market by the prefix Sig. The prefix is connected to the signature
counter value by a minus sign. The value 20181109084236Z represents the time value for the creation of the
system log message that replaced DATE. In the example, the value Gent for DATE-FORMAT indicates that
the date/time value is formatted in the ANS.1 type GeneralizedTime (see chapter 3.1).

Gent_20181109084236Z_Sig-1743_Log-Sys_UpdateTime.log

Text 8: Example for a file name of a system log message

58 Federal Office for Information Security

Export Formats 5

5.1.2.3 Audit Log Message Files

In a TAR archive, audit log message files SHALL have file names that conform to the structure defined in text
9. The capitalized parts of the file name that are separated by an underscore represent particular information
of an audit log message (see text 9). Theses parts SHALL be replaced by the corresponding values according
to table 57. To facilitate the identification of the values for the signature counter and an optional file counter
in the file name, these values SHALL be marked by a prefix (see italic content in text 9). A prefix SHALL be
connected by a minus sign to the corresponding value. An audit log message file SHALL have the file
extension log. The file extension SHALL be separated by a point from the rest of the file name.

DATE-FORMAT_DATE_Sig-SIGNATURE-COUNTER_LOG_Fc-FILE-COUNTER.log

Text 9: Structure of file names for audit log messages

Part of file name Description

DATE-FORMAT SHALL represent the type of the value for DATE conforming to the formats
defined in chapter 3.1. These time formats SHALL be represented by the
following values:
– Gent: ASN. 1 GenerelizedTime
– Utc: ASN.1 UTCTime
– Unixt: Unix Time

DATE SHALL represent the date/time of the creation of the log message file. The
format SHALL be conform to a format from chapter 3.1.

SIGNATURE-COUNTER SHALL represent the value of the signature counter when the signature value
of the log message has been created. The signature counter value SHALL be
marked by the prefix Sig (see text 9). This prefix SHALL be connected to the
signature counter value by a minus sign.

LOG SHALL indicate that the log message has been created for logging audit data.
This information SHALL be represented by the predefined value Log-Aud.

FILE-COUNTER This part of the file name MAY be present. It MUST be present, if one or more
files of the same name already exist. In this context, file names are compared
without considering values for FILE-COUNTER. In the case of equal file
names, a value for FILE-COUNTER SHALL be contained in the file name. This
value SHALL represent the number of already existing files of the same name.
The value for FILE-COUNTER SHALL be marked by the prefix Fc. This prefix
SHALL be connected to the FILE-COUNTER value by a minus sign (see text 9).

Table 57: Parts of the file names of audit log messages in export tar archive

The contents of the file SHALL be structured as defined in table 2.

In text 10 an example for the name of an audit log message file is shown. The audit log message file can be
identified by the value Log-Aud that has replaced LOG. It can be seen that the value 1853 for the signature
counter is market by the prefix Sig. The prefix is connected to the signature counter value by a minus sign.
The value 1543565694 represents the time value for the creation of the audit log message that replaced
DATE. In the example, the value Unixt for DATE-FORMAT indicates that the date/time value is formatted in
Unix Time (see chapter 3.1). The value represents the date/time 9 hours, 14 minutes and 54 seconds at the
30th of November in the year 2018. The value for the FILE-COUNTER indicates that one file of the same
name is already existing. The value for FILE-COUNTER is marked by the prefix Fc.

Federal Office for Information Security 59

5 Export Formats

Unix_1543565694_Sig-1853_Log-Aud_Fc-1.log

Text 10: Example for a file name of an audit log message

5.1.3 Certificate files

The TAR archive SHALL contain all certificates needed to verify the exported log messages. These certificates
SHALL be encoded as Card-Verifiable-Certificates (CVC) according to [ISO7816-8] or as X.509 certificates
according to [X509]. The structure of file names of certificates SHALL conform to the definition in text 11.
The capitalized parts of the file name structure SHALL be replaced by values defined in table 58.

SERIAL_TYPE.EXTENSION

Text 11: Structure of file name for certificates

Part of file name Description

SERIAL This part of the file name SHALL be the hash of the public key used in the
certificate.

TYPE SHALL represent the type of a certificate. The different certificate types are
indicated by the following values:
– CVC corresponds to Card Verifiable Certificates (CVC)
– X509 corresponds to X.509 certificates

EXTENSION SHALL represents the file extensions for the different certificate types. The file
extensions SHALL conform to the following values:
– CVC: The extension SHALL be der or DER
– X.509: The extension SHALL be cer, CER, crt, CRT, pem, PEM, der or DER
The extension of the file name SHALL be separated by a point from the rest of
the file name.

Table 58: Parts of the file names of certificates in export tar archive

Text 12 shows an example for the file name of a certificate. The value X509 for TYPE indicates that the
certificate is an X.509 certificate. The serial number is represented by the value
ca54f563941228305fa4c772fa9427b31464f439d7b2907fb0fdca9571fde1ed that replaced SERIAL. The file
extension is cer.

ca54f563941228305fa4c772fa9427b31464f439d7b2907fb0fdca9571fde1ed_X509.cer

Text 12: Example for a file name of an X.509 certificate

60 Federal Office for Information Security

Appendix A: System log messages 6

6 Appendix A: System log messages
This chapter contains the definitions of TLV structures to represent system operation data of SE API
functions that MUST be logged with help of system log messages.

6.1 Initialize

The systemOperationData octet string MUST contain the following information:

Data field Tag Data type Mandatory? Description

description 0x81 PrintableString m MUST contain the description of the initialize
function call

6.2 UpdateTime

The systemOperationData octet string MUST contain the following information:

Data field Tag Data type Mandatory? Description

timeBeforeUpdate 0x81 SHALL
conform to a
type defined in
chapter 3.1.

m MUST contain the current time of the Secure
Element (before the update). If the time of the
Secure Element has not been set, timeBeforeUpdate
is set to the last time value that has been secured in
the non-volatile memory of the Secure Element.

timeAfterUpdate 0x82 SHALL
conform to a
type defined in
chapter 3.1.

m MUST contain the new reference time of the Secure
Element.

6.3 DisableSecureElement

The systemOperationData octet string MUST contain the following information:

Data field Tag Data type Mandatory? Description

timeOfDeactivation 0x81 SHALL
conform to a
type defined in
chapter 3.1.

m MUST contain the current time of the Secure
Element when its deactivation is started.

6.4 AuthenticateUser

The systemOperationData octet string MUST contain the following information:

Data field Tag Data type Mandatory? Description

userId 0x81 PrintableString m MUST contain the ID of the user who or
application that has invoked the
authentication function.

Federal Office for Information Security 61

6 Appendix A: System log messages

Data field Tag Data type Mandatory? Description

role 0x82 ENUMERATED{
 admin,
 timeAdmin
}

m MUST represent the role of the
user/application. Must contain the value
– “admin” for the Admin role or
– “timeAdmin” for the role TimeAdmin (see

chapter 4.2).

authenticationResult 0x83 BOOLEAN m MUST contain the result of the authentication
procedure.
The value “TRUE” SHALL indicate that the
authentication has been successful.
The value “FALSE” SHALL indicate that the
authentication has failed.

6.5 LogOut

The systemOperationData octet string MUST contain the following information:

Data field Tag Data type Mandatory? Description

userId 0x81 PrintableString m MUST contain the ID of the authenticated user
who or the application that triggered the log
out.

logOutCause 0x82 ENUMERATED{
 user,
 timeout
}

m MUST represent the cause for the log out.
The data field Must contain the value
– “user” if the log out has been triggered by

an authenticated user/application or
– “timeout” if the log out has been triggered

automatically by the SE API after a timeout
(see chapter 4.2).

6.6 UnblockUser

The systemOperationData octet string MUST contain the following information:

Data field Tag Data type Mandatory? Description

userId 0x81 PrintableString m MUST contain the ID of the user who or
the application that wants to unblock the
corresponding PIN.

unblockResult 0x82 ENUMERATED
UnblockResult{
 ok,
 failed,
 unknownUserId,
 error
}

m MUST contain the result of the unblock
procedure.

The value ok SHALL indicate that the
authentication has been successful.
The value failed SHALL indicate that the
unblocking has failed.
The value unknownUserId SHALL indicate
that the passed userId is not managed by
the SE API.
The value error SHALL indicate that an
error has occurred during the execution of
the function unblockUser.

62 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

7 Appendix B: Mapping of OMG IDL constructs to
ANSI C and Java

7.1 Introduction

This annex describes the OMG IDL constructs that have been used in the context of the SE API and how the
OMG IDL definitions of the functions in Chapter 4 have been translated into their respective translations in
ANSI C and Java.

The approach is based on the OMG IDL mappings to ANSI C and Java that are provided in [OMG2017a],
[OMGx] and [OMG1999]. These descriptions are adopted in various places as they focus on a translation into
CORBA constructs (which is not the objective for the interface defined in this document).

The chapters of [OMG2017a] that are listed in Table 59 can be used without any modification, except for the
usage of OMG IDL arrays (see Chap. 7.5). These chapters describe the specification of the OMG IDL language
constructs that have been used to define the SE API.

Building block Chapter Description

Building Block Core Data Types 7.4.1 Specification of language constructs for:

• IDL specifications

• modules

• constants

• data types

Building Block Interfaces – Basic 7.4.3 Specification of language constructs for:

• exceptions

• interfaces

• operations

• attributes

Table 59: Relevant building blocks in [OMG2017a]

Table 60 provides an overview over the following sub chapters and shows, which parts of the OMG IDL
standard needed adoption.

Section Description

7.2 This chapter shows the representation of OMG IDL basis data types in ANSI C and JAVA.

7.3 This chapter shows the representation of OMG IDL strings in ANSI C and JAVA.

7.4 This chapter shows the representation of OMG IDL enumerations in ANSI C and JAVA.

7.5 This chapter considers the representation of OMG IDL arrays in ANSI C and JAVA.

7.6 General aspects of the representation of an OMG IDL specification in ANSI C and JAVA.

Federal Office for Information Security 63

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

7.7 This chapter shows how OMG IDL exceptions are specified in ANSI C and JAVA.

7.8 This chapter shows how OMG IDL optional function parameters are specified in ANSI C and
JAVA.

7.9 This chapter shows how OMG IDL input parameters are specified in ANSI C and JAVA.

7.10 This chapter shows how OMG IDL output parameters are specified in ANSI C and JAVA.

7.11 This chapter shows how OMG IDL return values are defined in ANSI C and JAVA.

Table 60: Overview of the following chapters

7.2 Mapping of basic types

Table 61 contains information regarding the basic data types that have been used to define the SE API. This
table has been specified under consideration of the following aspects:

– OMG IDL standard definition for the syntax of basic types in [OMG2017a], Chap. 7.4.1.4.4.1.1, p. 25 f.

– The value ranges for the integer types in OMG IDL as defined in [OMG2017a], Chap. 7.4.1.4.4.1.1.1, p. 26.

– The mapping of the OMG IDL integer types to the corresponding Java types as defined in [OMGx], Table
4.1, p. 6. The definition of the value ranges regarding the relevant Java types occurs in [ORACLE2017] (see
Chap. 4.2.1, p. 43).

– The mapping of the OMG IDL integer types to the corresponding C types as defined in [OMG1999], Chap.
1.7, p. 1-10. As [OMG1999] does not consider ANSI C, the definitions of integer types in [ANSI99] have to
be taken into account. Here, the limit values for the ranges of the different integer types are defined in
[ANSI99], Chap. 5.2.4.2.1. Regarding signed integer values, the limit values define that the

– minimal limit value in a concrete implementation has to be equal or smaller than the corresponding
minimal limit value defined in [ANSI99].

– maximal limit value in a concrete implementation has to be equal or greater than the corresponding
maximal limit value defined in [ANSI99].

For an unsigned integer type, the maximal limit value in a concrete implementation has to be equal or
greater than the corresponding maximal limit value defined in [ANSI99].

OMG IDL ANSI C Java Comment

short (-215
 … 215- 1) short int

(-(215 - 1) … 215 - 1)
short (-215

 … 215- 1) ANSI C: Common
implementations provide a value
range of(-(215) … 215 - 1)

long (-231
 … 231- 1) long int

(-(231 - 1) … 231 - 1)
int (-231

 … 231- 1) ANSI C: Common
implementations provide a value
range of(-(231) … 231 - 1)

long long
(-263

 … 263- 1)
long long int
(-(263 - 1) … 263 - 1)

long (-263
 … 263- 1) ANSI C: Common

implementations provide a value
range of(-(263) … 263- 1)

64 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

OMG IDL ANSI C Java Comment

unsigned short
(0 … 216-1)

unsigned short int
(0 … 216-1)

int (-231
 … 231- 1) ANSI C: Common

implementations provide a value
range of 0 … 216-1

Java: The range of the
corresponding Java type does not
match because Java does not
support unsigned types.
The Java type int SHALL be used.
The developers SHALL examine
that relevant parameter values
belong to the correct range.

unsigned long
(0 … 232-1)

unsigned long int
(0 … 232-1)

long (-263
 … 263- 1) ANSI C: Common

implementations provide a value
range of 0 … 232-1

Java: The range of the
corresponding Java type does not
match because Java does not
support unsigned types.

Therefore, the Java type long
SHALL be used. Here, the
developers SHALL examine that
relevant parameter values belong
to the correct range.

unsigned long long
(0 … 264 -1)

unsigned long long int
(0 … 264 - 1)

long (-263
 … 263- 1) ANSI C: Common

implementations provide a value
range of 0 … 264 – 1

Java: The range of the
corresponding Java type does not
match because Java does not
support unsigned types.

The Java type long SHALL be used
for the mapping. In this context,
the value range from 0 to 263- 1
SHALL be relevant for the
mapping. Accordingly, the
maximal value of the used Java
type long is smaller than the
maximal value of the
corresponding OMG IDL type.

octet

(see [OMG2017a], Chap.
7.4.1.4.4.1.1.6, p. 27)

unsigned char byte

(see [ORACLE2017],
Chap. 4.2.1, p. 43)

OMG IDL: “The octet type is an
opaque 8-bit quantity”
([OMG2017a], Chap.7.4.1.4.4.1.1.6,
p. 27)

Federal Office for Information Security 65

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

OMG IDL ANSI C Java Comment

boolean

(see [OMG2017a], Chap.
7.4.1.4.4.1.1.5, p. 27)

_Bool

(see [ANSI99], Chap. 6.2.5, p.
33).

boolean

(see [ORACLE2017],
Chap. 4.2, p. 43)

OMG IDL: The boolean data type
can only take the values TRUE and
FALSE.

ANSI C: ANSI C provides the
header file <stdbool.h> (, Chap.
7.16, p. 252) that enables the use of
the identifier bool for the type
_Bool. In the context of the SE API
the specifier bool is used.

Presentation of
date/time by the native
type DateType.

Presentation by the
structure tm from the
header file time.h. (cf.
[ANSI99], Chap. 7.23.1, p.
337)

Presentation by using
the Java class
java.util.Gregorian
Calendar

OMG IDL: An OMG IDL native
type allows a mapping to a type of
a specific programming language.

The date/time SHALL be
represented in UTC.

Table 61: Mapping of data types

7.3 Definition of strings

Regarding the definition of strings, the OMG IDL distinguishes between non-wide strings and wide strings.
As no wide strings have been used to define the SE API, the following discussion refers only to non-wide
strings.

In the context of the OMG IDL, non-wide strings are represented by the type string (see [OMG2017a], Chap.
7.4.1.4.4.1.2.2, p. 27). Optionally, it is possible to define the maximum size of a string. The size of a string is
represented by a positive integer value that is surrounded by the signs < and >.

In Java OMG IDL strings are mapped to the data type java.lang.String (see [OMG2017a], Chap. 4.3.3, p. 56)

In ANSI C OMG IDL, strings are implemented by string literals (see [ANSI99], Chap. 6.4.5, p. 62 f.). A string
literal is represented by an array of elements of the type char. String literals are terminated by a null
character (see [ANSI99], Chap. 7.1.1, p. 164).

If an input parameter of a function is of the type char array, an additional input parameter representing the
length of the char array is passed (see Chap. 7.9). If an output parameter of a function is of the type char
array, an additional output parameter representing the length of the char array is returned (see Chap. 7.10).

7.4 Enumerations

The OMG IDL provides the language construct enumeration (see [OMG2017a], Chap. 7.4.1.4.4.2.3) that
enables the definition of data types with a finite set of values. Enumerations are defined by the keyword
enum that is followed by the name of the enumeration. The set of values is contained in braces. The values
are separated by commas.

In the context of the SE API definition, OMG IDL enumerations are represented by enum types in Java and
(see [ORACLE2017], Chap. 8.9) and enumerations in ANSI C (see [ANSI99], Chap. 6.7.2.2).

Text 13 shows an example for the mapping of an OMG IDL enumeration to ANSI C and Java.

66 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

OMG IDL

enum color {red, green, blue, orange};

Corresponding ANSI C code

enum color{red, green, blue, orange};

Corresponding Java code

enum color{red, green, blue, orange}

Text 13: Example for mapping of OMG IDL enumeration to ANSI C and Java

7.5 Arrays

The OMG IDL provides the language construct array (see [OMG2017a], Chap. 7.4.1.4.4.3) that represents the
data structure array. These arrays can be one-dimensional or multi-dimensional. In deviation from
[OMG2017a]the use of arrays of variable length is allowed.

In the context of the SE API definition, only one-dimensional arrays are used as types of function
parameters. At this, an array is represented by its type, its name and a following opening and closing squared
bracket. If the array is of fixed length, the squared brackets contain the definition for the size of the array in
form of a positive integer value. If an array has no fixed size, the squared brackets contain no integer number.
This notation for the use of arrays with no fixed size represents an extension to [OMG2017a].

OMG IDL arrays are represented by the particular array constructs in Java (see [ORACLE2017], Chap. 10, p.
347) and ANSI C (see [ANSI99], Chap. 6.7.5.2, p. 116 f.) respectively.

7.6 Definition context

OMG IDL specifications are contained in IDL-files. An IDL specification can contain the definitions for
interfaces, exceptions, types, and constants. These definitions can be grouped by modules (see [OMG2017a],
7.4.1.4.2, p. 20). Regarding the OMG IDL definition of the SE API, the above mentioned constructs are
grouped by a module.

For the definition of interfaces, the OMG IDL provides the language construct interface (see [OMG2017a],
7.4.3.4.3, p. 37).

OMG IDL modules are implemented in Java by the construct package (cf. [ORACLE2017], Chap. 7.4, p. 181) of
the same name. OMG IDL interfaces are mapped to the Java construct interface (see [ORACLE2017], Chap. 9,
p. 293 ff.). Java interfaces contain the signature definitions of functions. OMG IDL interfaces are mapped to a
public Java interface of the same name that is contained in a Java-file of the same name.

It is not possible to implement OMG IDL modules in ANSI C. For the implementation of OMG IDL interfaces
ANSI C does not provide an explicit language construct. Accordingly, OMG IDL interfaces are implemented
in ANSI C by defining the relevant function signatures in header files. Here, a header file has the same name
as the corresponding OMG IDL interface.

7.7 Exceptions

Exceptions are a means of error handling. In the context of the OMG IDL, exceptions are supported by the
language construct exception (see [OMG2017a], Chap. 7.4.3.4.2, p. 37). Defined exceptions are assigned to
interface functions by using the keyword raises.

Federal Office for Information Security 67

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

There are two basic ways to implement the exceptions that have been specified for the functions in this
chapter:

– Some programming languages support exceptions as an explicit construct of the language. In erroneous
situations, a function raises an exception at the point where an error is detected. Here, the program flow
of the function is interrupted immediately and the exception is caught in the program code or by the
code of the calling application. Therefore, the function does not return a return value.

– If no specialized language constructs are provided, exception handling is implemented by error codes.
Here, the function exits its program flow when an error is detected by returning an appropriate error
code as the return value.

For the translation of the SE API into ANSI C and Java this means:

In Java the concept of exceptions is implemented. OMG IDL exceptions are mapped to checked Java
exceptions (see [ORACLE2017], Chap. 11.1, p 360). An OMG IDL exception is implemented by a Java class
of the same name that extends the class java.lang.Exception. Java exceptions are assigned to an interface
function by the key word throws. The following example shows the mapping of the exceptions
ErrorIllegalDayValue and ErrorIllegalMonthValue defined in OMG IDL to Java. Regarding the Java code
the corresponding exception classes have been defined (the definition itself is not shown in the code) and
assigned to the relevant function.

OMG IDL

exception ErrorIllegalDayValue{};
exception ErrorIllegalMonthValue{};
 short saveTheDate(in short day, in short month, in short year)
 raises (ErrorIllegalDayValue, ErrorIllegalMonthValue);

Corresponding Java code

short saveTheDate(short day, short month, short year)
throws ErrorIllegalDayValue, ErrorIllegalMonthValue;

Text 14: Example for mapping of OMG IDL exception to Java

In ANSI C the concept of exceptions is not supported explicitly. Rather, it allows the implementation of an
error handling. In this context, the functions return error codes as a return value to indicate that the
execution of a function failed.

Error codes are implemented as constants in form of a pre-processor-directive. The name of a constant
corresponds to the name of the relevant OMG IDL exception. Here, the UpperCamelCase notation of the
OMG IDL exception name is transformed into a UPPER_CHARACTER_WITH_UNDERSCORES notation.

The following text shows an example of this translation into ANSI C.

68 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

OMG IDL

exception ErrorIllegalDayValue{};
exception ErrorIllegalMonthValue{};
short saveTheDate(in short day, in short month, in short year)
 raises (ErrorIllegalDayValue, ErrorIllegalMonthValue);

Corresponding ANSI C code

#define EXECUTION_OK
#define ERROR_ILLEGAL_DAY_VALUE -20000
#define ERROR_ILLEGAL_MONTH_VALUE -20001
short saveTheDate(short int day, short int month,

 short int year);

Text 15: Example for mapping of OMG IDL exception to ANSI C

7.8 Optional function parameters

short exportData (in unsigned long transactionNumber,
 in unsigned long clientId,
 in unsigned long maximumNumberRecords,
 out octet exportedData []);

short exportData (in unsigned long startTransactionNumber,
 in unsigned long endTransactionNumber,
 in unsigned long maximumNumberRecords,
 out octet exportedData []);

short exportData (in DateTime startDate,
 in DateTime endDate,
 in unsigned long maximumNumberRecords,
 out octet exportedData []);

short exportData (in unsigned long maximumNumberRecords,
 out octet exportedData []);

Text 16: Example for representing different expressions of a function

OMG IDL does not provide any construct for representing optional and conditional input and output
parameters of a function. Regarding this information a developer SHALL consider the appropriate
definitions for the input and/or output parameters of the different functions of the SE API in chapter 4. If it
is predictable that a function is called with certain combinations of input and/or output parameters,
particular expressions of the function with appropriate parameter combinations are defined.

Text 16 shows the definition of the different expressions of the function export in OMG IDL (the exceptions
are not represented).

7.9 Function input parameters

In OMG IDL function input parameters are defined by the keyword in (see [OMG2017a] , Chap. 7.4.3.4.3.3.1, p.
39 f.).

Federal Office for Information Security 69

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

In ANSI C and Java input parameters of a primitive type are defined directly by replacing the appropriate
OMG IDL types by the corresponding ANSI C and Java type respectively.

The following text shows an example of this translation.

OMG IDL specification

long calculateSum (in short summandOne, in short summandTwo,
 in boolean fastCalculation);

Corresponding Java code
int calculateSum (short summandOne, short summandTwo,

 boolean fastCalculation);

Corresponding ANSI C code
long int calculateSum (short int summandOne,

 short int summandTwo,
 bool fastCalculation);

Text 17: Example for representing OMG IDL input parameters in ANSI C and Java

OMG IDL input parameters in form of arrays are mapped to the particular array constructs in Java and ANSI
C.

Regarding to Java, the definition of an appropriate input parameter follows the ordinary declaration of an
array.

In the context of ANSI C, the length of the array is defined as an additional input parameter. The definition
of this additional input parameter

– follows directly after the definition of the input parameter for the corresponding array,

– is of the ANSI C type unsigned long int and

– has the same name as the corresponding array plus the extension Length.

In ANSI C strings are represented in form of char arrays. Accordingly, the corresponding array length is also
passed.

The Text 18 shows an example for the mapping of input parameters with the types of a byte array and a
string respectively.

70 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

OMG IDL specification

short saveData (in octet inputData[], in string comment);

Corresponding Java code

 short saveData (byte inputData[], String comment);

 Corresponding ANSI C code

short int saveData(unsigned char *inputData,
unsigned long int inputDataLength,
unsigned char *comment,
unsigned long int commentLength);

Text 18: Example for input parameters in form of arrays and strings

7.10 Function output parameters

In OMG IDL function output parameters are defined by the keyword out (see [OMG2017a] , Chap. 7.4.3.4.3.3.1,
p. 39 f.).

To represent output parameters in Java, the data for the relevant function parameters must be passed in
form of a call-by-reference. Accordingly, changes to a parameter value inside the function affect the original
data. In Java only parameters of types that are specified by Java classes or interfaces can be passed as call-by-
reference.

In Java parameter values of primitive number types (e. g. int), the primitive type boolean, the type String and
enumeration types can only be passed in form of call-by-value. In the context of call-by-value a copy of the
parameter value is passed to a function. Accordingly, changes to a parameter value are only relevant in the
context of the function and do not affect the original data.

To allow the definition of output parameters in Java for the above mentioned types, appropriate holders in
form of final5 Java classes are specified. The name of such a holder class consists of the name of the type and
the extension Holder. It has one private property named value that is of the particular type. The holder
class provides a constructor with an input parameter for setting the value of the value property. To get the
property value, the function getValue is defined. The function setValue is defined to set the property.

The example in Text 19 shows the definition regarding a holder class for the primitive Java type int.

In ANSI C output parameters can be specified by using appropriate pointers to the types of the
corresponding parameters.

5 A final Java class can not be extended by inheritance.

Federal Office for Information Security 71

7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java

final public class IntHolder{

public IntHolder(int newValue){
 value=newValue;

}
private int value;

public int getValue(){
 return value;
}

public void setValue(int newValue){
 value=newValue;
}

}

Text 19: Definition of a holder class for the primitive Java type int

Text 20 shows an example for the representation of OMG IDL output parameters of a primitive type in ANSI
C and Java. Regarding the Java representation of the output parameter the holder class IntHolder from the
previous example (see Text 19) is used.

OMG IDL specification

short calculateSum (in short summandOne, in short summandTwo,
 out long sum);

Corresponding Java code
short calculateSum (short summandOne, short summandTwo,

IntHolder sum);

Corresponding ANSI C code
short int calculateSum (short summandOne, short summandTwo,

 long int *sum);

Text 20: Example for representing an output parameter of a primitive type in Java and ANSI C

In Java, arrays can not be passed by reference. Accordingly, an appropriate holder class is needed. The name
of this class consists of the name of relevant type and the extension ArrayHolder. The property value of this
class represents an array of the particular type.

In ANSI C, output parameters in form of arrays are defined by a double pointer of the relevant type. The
additional output parameter regarding the length of the returned array is defined by a pointer of the type
unsigned long int.

The Text 21 represents an example for the mapping of an OMG IDL output parameter in form of a byte array
to Java and ANSI C.

OMG IDL specification

short getData(out octet outputData[]);

72 Federal Office for Information Security

Appendix B: Mapping of OMG IDL constructs to ANSI C and Java 7

Corresponding Java code

short getData(ByteArrayHolder outputData);

Corresponding ANSI C code

short int getData(unsigned char **outputData,
 unsigned long int *outputDataLength);

Text 21: Example for representing an OMG IDL output parameter in form of a byte array in Java and ANSI C

7.11 Return value

In OMG IDL the return value of a function is represented by the type of the function.

In ANSI C and Java return values are defined directly by replacing the appropriate OMG IDL types by the
corresponding ANSI C and Java type respectively.

Federal Office for Information Security 73

8 Appendix C: The TAR file format

8 Appendix C: The TAR file format
The TAR file format allows it to combine multiple files into one. It also allows the analysis of the TAR file on
all common Operating Systems (i.e. the TAR file can be easily unpacked and the content can be viewed).

This document references the format specified in [POSIX.1-1988].

A tar archive consists of a series of file objects. Figure 2 shows that the original information of each file that is
contained in the tar archive stays unchanged.

Each file object included in the tar archive is preceded by a 512-byte header record. The file data is written
unaltered directly following the header, but is rounded up to a multiple of 512 bytes (denoted as padding in
Figure 2). As most modern implementations use a padding of zeros, implementations following this
document SHALL also use zeros for this padding.

The end of an archive is marked by at least two consecutive zero-filled records of 512 byte. The final block of
an archive is padded out to full length with zeros.

The TAR standard as defined in [POSIX.1-1988] allows certain options for the headers that are explained and
restricted in this chapter as follows:

1. In addition to entries describing archive members, an archive MAY contain entries which tar itself uses to
store information. The implementation MAY use such entries but their use is not mandatory.

2. The file header of each file in the tar file SHALL be filled as explained in Table 62.

3. All characters in the header logical record SHALL be represented by ASCII characters that are contained in
the coded character set of [ISO646] (cf. [OpenGroup2004]).

Header part Data type Description

name char[100] This field contains the name of the file, with directory names (if any)
preceding the file name, separated by slashes.
The implementation MUST not use any directory names, all files
SHALL be stored in the root of the tar file.

mode char[8] The mode field provides nine bits specifying file permissions and three
bits to specify the Set UID, Set GID, and Save Text (sticky) modes.
This field MAY be used at the discretion of the developer.

uid char[8] The uid and gid fields are the numeric user and group ID of the file
owners, respectively. If the operating system does not support numeric
user or group IDs, these fields should be ignored.
This field MAY be used at the discretion of the developer.

gid char[8]

74 Federal Office for Information Security

Figure 2: TAR file format

Appendix C: The TAR file format 8

Header part Data type Description

If the developer does not use these fields for a certain purpose, the field
SHOULD be set to ‘0’.

size char[12] The size field SHALL indicate the amount of data that follows the
header. This value SHALL be represented by a decimal number that is
encoded as an octal number in ASCII.

mtime char[12] The mtime field is the data modification time of the file at the time it
was archived. It is the ASCII representation of the octal value of the last
time the file's contents were modified, represented as an integer
number of seconds since January 1, 1970, 00:00 Coordinated Universal
Time.
The API SHALL use the date and time of the tar archive creation for this
entry.

chksum char[8] The chksum field is the ASCII representation of the octal value of the
simple sum of all bytes in the header block. Each 8-bit byte in the
header is added to an unsigned integer, initialized to zero, the precision
of which shall be no less than seventeen bits. When calculating the
checksum, the chksum field is treated as if it were all blanks.

typeflag char The typeflag field specifies the type of file archived. If a particular
implementation does not recognize or permit the specified type, the file
will be extracted as if it were a regular file.
The implementation SHALL set this character to ‘0’ which represents a
regular file. The implementation MUST not use any other file types.

linkname char[100] This entry is used if the typeflag is set to ‘1’ (link). As the
implementation MUST not use links, this entry SHALL remain empty.

magic char[6] The magic field indicates whether this archive was output in the P1003
([POSIX.1-1988]) archive format.
To indicate that the generated tar file shall be compliant to [POSIX.1-
1988], the implementation SHALL set this field to the character string
‘ustar’ that SHALL be terminated by a NUL character.

version char[2] This field SHALLbe set to the value ‘00’ (indicating a standard POSIX
archive). The value ‘00’ SHALL be represented by two ASCII digits for
zero. Accordingly, the data field SHALL contain the value “0x30 0x30”.

uname char[32] This field can be used to set the user name of the file. Please note that
this value might be ignored if this functionality is not supported by the
Operating System under which the tar file is unpacked.

gname char[32] This field can be used to set the group name of the file. Please note that
this value might be ignored if this functionality is not supported by the
Operating System under which the tar file is unpacked.

devmajor char[8] As the implementation shall only use regular files within the tar file,
this field SHALL stay empty.

devminor char[8] As the implementation shall only use regular files within the tar file,
this field SHALL stay empty.

Federal Office for Information Security 75

8 Appendix C: The TAR file format

Header part Data type Description

prefix char[155] First part of pathname. If the pathname is too long to fit in the 100
bytes provided by the standard format, it can be split at any / character
with the first portion going here. If the prefix field is not empty, the
reader will prepend the prefix value and a / character to the regular
name field to obtain the full path- name.
As the implementation MUST NOT use any path names for the files in
the tar archive, this field MUST remain empty.

pad char[12] This field SHALL represent the padding. It SHALL contain Nul bytes
encoded by the ASCII character for NUL.

Table 62: Tar file members header

76 Federal Office for Information Security

Appendix D: TLV structure for the return of serial numbers 9

9 Appendix D: TLV structure for the return of serial
numbers

A serial number is represented by a hash value over a public key. This public key belongs to a key pair that is
used for creating signature values in log messages. It MAY be possible that different key pairs are used for the
signature creation regarding different types of log messages. These different types include transaction logs,
system logs and audit logs (see chapter 2). The set of serial number can be obtained with help of the SE API
function exportSerialNumbers (see chapter 4.5.5). The value for the output parameter of this function is an
octet string. This octet string SHALL represent the BER-TLV encoded structure defined in table 63. This
structure SHALL contain one or more serial numbers and the types of log messages whose signature values
are created by using the corresponding key pair.

Data field Tag Data type Mandatory?

SetSerialNumbers 0x30 SEQUENCE OF m

serialNumberRecord 0x30 SEQUENCE m

serialNumber 0x04 OCTET STRING m

signedLogMessageType 0x30 SEQUENCE m

transactionLog 0x80 BOOLEAN m

sytemLog 0x81 BOOLEAN m

auditLog 0x82 BOOLEAN m

Table 63: Structure for the return of serial numbers

The elements MUST contain the information defined in table 64.

Data Description

serialNumberRecord MUST contain one or more pairs of a serial number and the types of log messages
whose signature values are created by using the corresponding key pair.

serialNumber MUST represented a serial number.

signedLogMessageType MUST contain the information for which types of log messages the signatures are
created by using the key pair that corresponds to the serialNumber.

transactionLog MUST contain the information that indicates if the key pair that corresponds to
the serialNumber is used for the signature creation in transaction logs.
The value TRUE SHALL indicate that this key pair is used for the signature creation
in transaction logs.
The value FALSE SHALL indicate that this key pair is not used for signature
creation in transaction logs.

sytemLog MUST contain the information that indicates if the key pair that corresponds to
the serialNumber is used for the signature creation in system logs.
The value TRUE SHALL indicate that this key pair is used for the signature creation
in system logs.
The value FALSE SHALL indicate that this key pair is not used for signature
creation in system logs.

Federal Office for Information Security 77

9 Appendix D: TLV structure for the return of serial numbers

Data Description

auditLog MUST contain the information that indicates if the key pair that corresponds to
the serialNumber is used for the signature creation in audit logs.
The value TRUE SHALL indicate that this key pair is used for the signature creation
in audit logs.
The value FALSE SHALL indicate that this key pair is not used for signature
creation in audit logs.

Table 64: Description of the elements of the TLV structure for the return of serial numbers

78 Federal Office for Information Security

Appendix E: ASN.1 definition of log messages 10

10 Appendix E: ASN.1 definition of log messages
LogMessage ::= SEQUENCE {
 version INTEGER (2),
 certifiedDataType OBJECT IDENTIFIER (

 id-SE-API-transaction-log |
 id-SE-API-system-log |
 id-SE-API-SE-audit-log),

 certifiedData ANY DEFINED BY certifiedDataType,
 serialNumber OCTET STRING,
 signatureAlgorithm AlgorithmIdentifier,
 seAuditData OCTET STRING OPTIONAL,
 signatureCounter INTEGER OPTIONAL,
 logTime Time,
 signatureValue OCTET STRING }

-- Certified data for transaction logs
operationType [0] IMPLICIT PrintableString,
clientId [1] IMPLICIT PrintableString,
processData [2] IMPLICIT OCTET STRING,
processType [3] IMPLICIT PrintableString OPTIONAL,
additionalExternalData [4] IMPLICIT OCTET STRING OPTIONAL,
transactionNumber [5] IMPLICIT INTEGER,
additionalInternalData [6] IMPLICIT OCTET STRING OPTIONAL,

-- Certified data for system logs
operationType [0] IMPLICIT PrintableString,
systemOperationData [1] IMPLICIT OCTET STRING
additionalInternalData [2] IMPLICIT OCTET STRING OPTIONAL,

Time ::= CHOICE {
 utcTime UTCTime, -- "YYMMDDhhmm[ss]Z"
 generalizedTime GeneralizedTime, -- "YYYYMMDDHH[MM[SS[.fff]]]Z"
 unixTime INTEGER } -- 64 bit / 8 Byte "1541688722"

AlgorithmIdentifier ::= SEQUENCE {
 algorithm OBJECT IDENTIFIER(

 ecdsa-plain-SHA224 |
 ecdsa-plain-SHA256 |
 ecdsa-plain-SHA384 |
 ecdsa-plain-SHA512 |
 ecdsa-plain-SHA3-224 |
 ecdsa-plain-SHA3-256 |
 ecdsa-plain-SHA3-384 |
 ecdsa-plain-SHA3-512 |
 ecsdsa-plain-SHA224 |
 ecsdsa-plain-SHA256 |
 ecsdsa-plain-SHA384 |
 ecsdsa-plain-SHA512 |
 ecsdsa-plain-SHA3-224 |
 ecsdsa-plain-SHA3-256 |
 ecsdsa-plain-SHA3-384 |
 ecsdsa-plain-SHA3-512),

 parameters ANY DEFINED BY algorithm OPTIONAL }

Federal Office for Information Security 79

10 Appendix E: ASN.1 definition of log messages

-- Object Identifier
bsi-de OBJECT IDENTIFIER ::= {
 itu-t(0) identified-organization(4) etsi(0)
 reserved(127) etsi-identified-organization(0) 7}

sE-API OBJECT IDENTIFIER ::= {bsi-de applications (3) 7}

sE-API-dataformats OBJECT IDENTIFIER ::= {sE-API 1}

id-SE-API-transaction-log OBJECT IDENTIFIER ::= {sE-API-dataformats 1}

id-SE-API-system-log OBJECT IDENTIFIER ::= {sE-API-dataformats 2 }

id-SE-API-SE-audit-log OBJECT IDENTIFIER ::= {sE-API-dataformats 3 }

-- ECC
id-ecc OBJECT IDENTIFIER ::= { bsi-de algorithms(1) 1 }

-- ECDSA
ecdsa-plain-signatures OBJECT IDENTIFIER ::= { id-ecc signatures(4) 1 }

ecdsa-plain-SHA224 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 2 }
ecdsa-plain-SHA256 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 3 }
ecdsa-plain-SHA384 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 4 }
ecdsa-plain-SHA512 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 5 }
ecdsa-plain-SHA3-224 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 8 }
ecdsa-plain-SHA3-256 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 9 }
ecdsa-plain-SHA3-384 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 10 }
ecdsa-plain-SHA3-512 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 11 }

-- ECSDSA
ecsdsa-plain-signatures OBJECT IDENTIFIER ::= { id-ecc signatures(4) 4 }

ecsdsa-plain-SHA224 OBJECT IDENTIFIER ::= { ecsdsa-plain-signatures 1 }
ecsdsa-plain-SHA256 OBJECT IDENTIFIER ::= { ecsdsa-plain-signatures 2 }
ecsdsa-plain-SHA384 OBJECT IDENTIFIER ::= { ecsdsa-plain-signatures 3 }
ecsdsa-plain-SHA512 OBJECT IDENTIFIER ::= { ecsdsa-plain-signatures 4 }
ecsdsa-plain-SHA3-224 OBJECT IDENTIFIER ::= { ecsdsa-plain-signatures 5 }
ecsdsa-plain-SHA3-256 OBJECT IDENTIFIER ::= { ecsdsa-plain-signatures 6 }
ecsdsa-plain-SHA3-384 OBJECT IDENTIFIER ::= { ecsdsa-plain-signatures 7 }
ecsdsa-plain-SHA3-512 OBJECT IDENTIFIER ::= { ecsdsa-plain-signatures 8 }

80 Federal Office for Information Security

References

References
OMG2017a OMG: Interface Definition Language, Version 4.1, 2017
SPECZIP BSI: SE API definition in OMG IDL, ANSI C and Java
RFC2119 S. Bradner: Key words for use in RFCs to Indicate Requirement Levels
BSI TR-03116 BSI: Technische Richtlinie TR-03116 Kryptographische Vorgaben für Projekte der

Bundesregierung - Teil 5: Anwendungen der Secure Element API
ITU2015b International Telecomunication Union: X.690 - Information technology – ASN.1

encoding rules:Specification of Basic Encoding Rules (BER),Canonical Encoding Rules
(CER) andDistinguished Encoding Rules (DER), 2015

BSI PP-CSP: BSI, Protection Profile Cryptographic Service Provider,
ITU2015 International Telecomunication Union: X.680 - Information technology – Abstract

SyntaxNotation One (ASN.1): Specification of basic notation, 2015
IEEECS2018 IEEE Computer Society: The Open Group Base Specifications Issue 7, 2018 edition , 2018
POSIX.1-1988 The Open Group: POSIX.1-1988 -Portable Operating System Interface, 1988
ISO7816-8 ISO: ISO 7816-8 Identification cards — Integrated circuit cards —Part 8: Commands for

security operations, Part 8, 2016
X509 D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, T. Polk: RFC 5280 - Internet X.509

Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, 2008
OMGx OMG: IDL to Java Language Mapping, Version 1.3, 2008
OMG1999 OMG: C Language Mapping Specification, 1999
ORACLE2017 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith: The Java®

LanguageSpecificationJava SE, 9 Edition, 2017
ANSI99 ANSI, ISO: ISO/IEC 9899:1999, ANSI C, 1999
ISO646 ISO/ICE: Information technology -- ISO 7-bit coded character set for information

interchange, , 1991
OpenGroup2004 OpenGroup: The Open Group Base Specifications Issue 6, 2004,

https://pubs.opengroup.org/onlinepubs/009695399/utilities/pax.html#tagtcjh_15

Federal Office for Information Security 81

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Purpose and general functionality of the SE API
	1.3 Content and scope
	1.4 Key words

	2 Log messages and their creation
	2.1 Common Log Message Structure
	2.2 Contents of Log Message
	2.3 Types of log messages
	2.3.1 Transaction logs
	2.3.2 System logs
	2.3.3 Audit logs

	2.4 Signature Computation and Verification
	2.5 Creation of Transaction Logs
	2.5.1 Start a transaction
	2.5.2 Update a transaction
	2.5.2.1 Log Message Signature Creation with Signed Updates

	2.5.3 Finish a transaction
	2.5.4 Visualisation of the signature computation and verification (informative)

	3 Secure Element Functionality
	3.1 Time Formats

	4 Secure Element API Functionality
	4.1 Error handling
	4.1.1 Common Exceptions
	4.1.1.1 ErrorSeApiNotInitialized
	4.1.1.2 ErrorTimeNotSet
	4.1.1.3 ErrorCertificateExpired
	4.1.1.4 ErrorSecureElementDisabled

	4.2 Restricted usage of functions
	4.3 Maintenance and Time Synchronization
	4.3.1 Initialize
	4.3.1.1 Initialize – Input parameters
	4.3.1.2 Initialize – Output parameters
	4.3.1.3 Initialize – Exceptions
	4.3.1.4 Initialize – Detailed description

	4.3.2 UpdateTime
	4.3.2.1 UpdateTime – Input parameters
	4.3.2.2 UpdateTime – Output parameters
	4.3.2.3 UpdateTime – Exceptions
	4.3.2.4 UpdateTime – Detailed description

	4.3.3 DisableSecureElement
	4.3.3.1 DisableSecureElement – Input parameters
	4.3.3.2 DisableSecureElement– Output parameters
	4.3.3.3 DisableSecureElement – Exceptions
	4.3.3.4 DisableSecureElement – Detailed description

	4.4 Input Functions
	4.4.1 StartTransaction
	4.4.1.1 StartTransaction – Input parameters
	4.4.1.2 StartTransaction – Output parameters
	4.4.1.3 StartTransaction – Exceptions
	4.4.1.4 StartTransaction – Detailed description

	4.4.2 UpdateTransaction
	4.4.2.1 UpdateTransaction – Input parameters
	4.4.2.2 UpdateTransaction – Output parameters
	4.4.2.3 UpdateTransaction – Exceptions
	4.4.2.4 UpdateTransaction – Detailed description

	4.4.3 FinishTransaction
	4.4.3.1 FinishTransaction – Input parameters
	4.4.3.2 FinishTransaction – Output Parameters
	4.4.3.3 FinishTransaction – Exceptions
	4.4.3.4 FinishTransaction – Detailed description

	4.5 Export Functions
	4.5.1 ExportData
	4.5.1.1 ExportData – Input parameters
	4.5.1.2 ExportData – Output parameters
	4.5.1.3 ExportData – Exceptions
	4.5.1.4 ExportData – Detailed Description

	4.5.2 ExportCertificates
	4.5.2.1 ExportCertificates – Input parameters
	4.5.2.2 ExportCertificates – Output parameters
	4.5.2.3 ExportCertificates – Exceptions
	4.5.2.4 Detailed description

	4.5.3 RestoreFromBackup
	4.5.3.1 RestoreFromBackup – Input parameters
	4.5.3.2 RestoreFromBackup – Output parameters
	4.5.3.3 RestoreFromBackup – Exceptions
	4.5.3.4 RestoreFromBackup – Detailed description

	4.5.4 ReadLogMessage
	4.5.4.1 ReadLogMessage – Input parameters
	4.5.4.2 ReadLogMessage – Output parameters
	4.5.4.3 ReadLogMessage – Exceptions
	4.5.4.4 ReadLogMessage – Detailed description

	4.5.5 ExportSerialNumbers
	4.5.5.1 ExportSerialNumbers – Input parameters
	4.5.5.2 ExportSerialNumbers – Output parameters
	4.5.5.3 ExportSerialNumbers – Exceptions
	4.5.5.4 ExportSerialNumbers – Detailed description

	4.6 Utility Functions
	4.6.1 GetMaxNumberOfClients
	4.6.1.1 GetMaxNumberOfClients – Input parameters
	4.6.1.2 GetMaxNumberOfClients – Output parameters
	4.6.1.3 GetMaxNumberOfClients – Exceptions
	4.6.1.4 GetMaxNumberOfClients – Detailed description

	4.6.2 GetCurrentNumberOfClients
	4.6.2.1 GetCurrentNumberOfClients – Input parameters
	4.6.2.2 GetCurrentNumberOfClients – Output parameters
	4.6.2.3 GetCurrentNumberOfClients – Exceptions
	4.6.2.4 GetCurrentNumberOfClients – Detailed description

	4.6.3 GetMaxNumberOfTransactions
	4.6.3.1 GetMaxNumberOfTransactions – Input parameters
	4.6.3.2 GetMaxNumberOfTransactions – Output parameters
	4.6.3.3 GetMaxNumberOfTransactions – Exceptions
	4.6.3.4 GetMaxNumberOfTransactions – Detailed description

	4.6.4 GetCurrentNumberOfTransactions
	4.6.4.1 GetCurrentNumberOfTransactions – Input parameters
	4.6.4.2 GetCurrentNumberOfTransactions – Output parameters
	4.6.4.3 GetCurrentNumberOfTransactions – Exceptions
	4.6.4.4 GetCurrentNumberOfTransactions – Detailed description

	4.6.5 GetSupportedTransactionUpdateVariants
	4.6.5.1 GetSupportedTransactionUpdateVariants – Input parameters
	4.6.5.2 GetSupportedTransactionUpdateVariants – Output parameters
	4.6.5.3 GetSupportedTransactionUpdateVariants – Exceptions
	4.6.5.4 GetSupportedTransactionUpdateVariants – Detailed description

	4.6.6 DeleteStoredData
	4.6.6.1 DeleteStoredData – Input parameters
	4.6.6.2 DeleteStoredData – Output parameters
	4.6.6.3 DeleteStoredData – Exceptions
	4.6.6.4 DeleteStoredData – Detailed description

	4.7 Authentication
	4.7.1 AuthenticateUser
	4.7.1.1 AuthenticateUser – Input parameters
	4.7.1.2 AuthenticateUser – Output parameters
	4.7.1.3 AuthenticateUser – Exceptions
	4.7.1.4 AuthenticateUser – Detailed description
	4.7.1.4.1 Detailed description of actions to log a failed authentication attempt

	4.7.2 LogOut
	4.7.2.1 LogOut – Input parameters
	4.7.2.2 LogOut – Output parameters
	4.7.2.3 LogOut– Exceptions
	4.7.2.4 LogOut – Detailed description

	4.7.3 UnblockUser
	4.7.3.1 UnblockUser – Input parameters
	4.7.3.2 UnblockUser – Output parameters
	4.7.3.3 UnblockUser– Exceptions
	4.7.3.4 UnblockUser – Detailed description
	4.7.3.4.1 Detailed description of actions for logging a failed unblocking attempt

	5 Export Formats
	5.1 TAR and TLV Export
	5.1.1 Initialization Information File
	5.1.2 Log Messages Files
	5.1.2.1 Transaction Log Message Files
	5.1.2.2 System Log Message Files
	5.1.2.3 Audit Log Message Files

	5.1.3 Certificate files

	6 Appendix A: System log messages
	6.1 Initialize
	6.2 UpdateTime
	6.3 DisableSecureElement
	6.4 AuthenticateUser
	6.5 LogOut
	6.6 UnblockUser

	7 Appendix B: Mapping of OMG IDL constructs to ANSI C and Java
	7.1 Introduction
	7.2 Mapping of basic types
	7.3 Definition of strings
	7.4 Enumerations
	7.5 Arrays
	7.6 Definition context
	7.7 Exceptions
	7.8 Optional function parameters
	7.9 Function input parameters
	7.10 Function output parameters
	7.11 Return value

	8 Appendix C: The TAR file format
	9 Appendix D: TLV structure for the return of serial numbers
	10 Appendix E: ASN.1 definition of log messages
	References

