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1. Introduction

Elliptic curve cryptography (ECC) is a very efficient technology to realise public key cryptosys-
tems and public key infrastructures (PKI). The security of a public key system using elliptic
curves is based on the difficulty of computing discrete logarithms in the group of points on an
elliptic curve defined over a finite field. The elliptic curve discrete logarithm problem (ECDLP),
described in Section 2.3.3, is currently believed to be asymptotically harder than the factoriza-
tion of integers or the computation of discrete logarithms in the multiplicative group of a finite
field (DLP), described in Section 2.2.5. As a matter of fact key sizes of cryptosystems based on
elliptic curves are short compared to cryptosystems based on integer factorization at the same
level of security.

The aim of this technical guideline is to facilitate the application of elliptic curve crypto-
graphy by giving recommendations on the secure deployment of elliptic curve cryptography in
commercial applications. For that purpose, this guideline compiles

• mathematical foundations of elliptic curves and

• algorithms based on elliptic curves in one document.

Furthermore, this guideline sets requirements on the suitable deployment of ECC in the context
of official German documents.

The algorithms described here are the elliptic curve based signature algorithms ECDSA,
ECGDSA, EC-Schnorr and EC-KCDSA for generating and verifying digital signatures, the
Elliptic Curve Key Agreement Algorithm (ECKA) for key establishment and the Password
Authenticated Connection Establishment (PACE).

The requirements that must be fulfilled by qualified electronic signatures according to the
German signature law (cf. [14]) may differ in some details. The deployment of ECC to classified
information is not in the scope of this guideline.

1.1. Patents and side-channel attacks

In implementations, patents and side-channel attacks play an important role.
The algorithms described in this guideline have been carefully selected to allow patent-free

and/or license-free implementations. Nevertheless, some of the described algorithms or its par-
ticular implementations may be subject of patent rights. The BSI shall not be held responsible
for identifying any or all such patent rights.

Implementors and security evaluators shall also pay attention to [6], which gives a general
guidance to assess the side-channel resistance of implementations on smartcards.

1.2. Standards

This document refers to a number of international standards related to elliptic curve cryptogra-
phy. Many national and international organizations have standardized the use of elliptic curves
in cryptography. The most important organizations and the corresponding standards are:

1. The International Organization for Standardization (ISO) has issued the following relevant
standards:

Federal Office for Information Security 7
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• ISO 15946 [24] (Information technology – Security techniques – Cryptographic tech-
niques based on elliptic curves) 1

– Part 1 (General) [22]

• ISO 14888 (Information technology – Security techniques – Digital signatures with
appendix )

– Part 3, including Amendment 1 (Discrete logarithm based techniques) [20], [21]

• ISO 11770 (Information technology – Security techniques – Key Management)

– Part 3 (Mechanisms using asymmetric techniques) [19]

2. The American National Standards Institute (ANSI) has standardized protocols for digital
signatures and for key agreement. The following standards are relevant:

• X9.62 (Public Key Cryptography For The Financial Services Industry – The Elliptic
Curve Digital Signature Algorithm (ECDSA)) [4].

• X9.63 (Public Key Cryptography For The Financial Services Industry – Key Agree-
ment and Key Transport Using Elliptic Curve Cryptography) [5].

3. The Institute of Electrical and Electronics Engineers (IEEE) has issued the standard P1363
(Standard Specifications for Public Key Cryptography) [15] and its amendment P1363a [16].
The standards describe commonly used cryptosystems like RSA, DSA, and cryptosystems
based on elliptic curves.

4. The IETF published in RFC 5639 (Elliptic Curve Cryptography (ECC) Brainpool Standard
Curves and Curve Generation) [32] an set of domain parameters defining cryptographically
strong groups on elliptic curves.

1.3. Symbols and Abbreviations

The following notations and abbreviations are used in this document:

Symbol Comments

N The set of all natural numbers (without 0).

Z The set of all integers.

Zm The set of all integers modulo m.

p A prime number.

Fp The finite field of p elements.

F2m The finite field of 2m elements, with m ∈ N.

E An elliptic curve defined by a Weierstraß equation. If E is
defined over a finite field of characteristic p > 3, then the
Weierstraß equation is of the form

y2 = x3 + ax+ b, a, b ∈ Fp , 4a3 + 27b2 6= 0. (1.1)

Essentially, this technical guideline considers elliptic curves
over prime fields of characteristic p > 3.

continued on next page

1Notice that parts of the ISO-standard 15946 are no longer relevant since they were replaced by other standards.
Part 2-Digital signatures [23] has been withdrawn as the content was incorporated into ISO 14888-3, and Part
3-Key establishment [24] has been withdrawn since the information was incorporated into ISO 11770-3.
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continued from page 8

Symbol Comments

E(Fp) An elliptic curve group over the field Fp consisting of all
points (x, y) ∈ F2

p solving the Weierstraß equation of E to-
gether with the point at infinity O.

#E(Fp) The order (or cardinality) of the group E(Fp).
O The point at infinity. It is the identity element of the group

E(Fp) and can not be described in affine coordinates.

P , Q Points on the elliptic curve E(Fp).
xP , yP The x- and y-coordinates of P in affine representation, if P

is different from O .

P +Q The sum of two points P and Q in E(Fp).
[k]P The k-th multiple of a point P ∈ E(Fp), i.e. [k]P = P +P +

· · ·+ P , k addends.

G The base point is a generator of a subgroup of E(Fp).
n The order of the base point G. Typically, n is a prime of bit

length ≥ 224.

A The sender of a cryptographic message.

B The receiver of a cryptographic message.

dA The private key of entity A. This is an integer in the set
{1, . . . , n− 1}.

PA The public key of entity A. This is a point on E(Fp). The
relation between dA and PA is given by the equation PA =
[dA]G except for the signature schemes ECGDSA and EC-
KCDSA, where the relation is P ′A = [d−1A mod n]G.

P̃A An ephemeral public key of entity A.

H(M) Hash value (digest) of the message M .

Hl(M) Truncated hash value of the message M . The hash value is
cropped to the l leftmost bits of H(M).

` Bit length of the output of a hash function.

κ Bit length of a symmetric key or key stream.

τ Bit length of the order of the base point, i.e. τ = dlog2 ne.
R⊕ S Bitwise sum of two octet or bit strings R, S.

Table 1.1.: Symbols and abbreviations.

1.4. Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 [10].

Federal Office for Information Security 9
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2. Mathematical Foundations

This section introduces the mathematical foundations required to understand elliptic curve cryp-
tography: First an overview on modular arithmetic is given in Section 2.1. Then the basic
properties of groups and finite fields are introduced in Section 2.2. Finally, elliptic curves over
finite fields Fp are described in Section 2.3.

2.1. Modular Arithmetic

The following description is based on P1363 [15]. However, this guideline makes use of a slightly
different notation.

Modular arithmetic fixes an integer m > 1 called the modulus. The fundamental operation in
the context of modular arithmetic is the reduction modulo m. Given an integer a, one divides
a by m and takes the remainder r as the result of the reduction. Therefore, r is in the range
0 ≤ r ≤ m− 1. The operation is written as

r = a mod m. (2.1)

Let a and b be two integers with remainders r1 and r2, respectively. Then a and b are said
to be congruent modulo m, if and only if r1 = r2. This relationship is written as a ≡ b mod m.
The following two properties of congruences can easily be seen:

1. Integers a and b are congruent modulo m if and only if b− a is divisible by m.

2. If r = a mod m then r ≡ a mod m.

The integers modulo m are the possible remainders modulo m. They are denoted by Zm.
Thus the set of integers modulo m is

Zm = {0, 1, . . . ,m− 1}.

Next, we enumerate properties of addition, subtraction, multiplication, and division in Zm.
Let a0, b0, a1, b1 be integers with a0 ≡ b0 mod m and a1 ≡ b1 mod m. Thus, a0 mod m and
b0 mod m represent the same element in Zm. The same holds for a1 and b1.

a0 + a1 ≡ b0 + b1 mod m (2.2)

a0 − a1 ≡ b0 − b1 mod m (2.3)

a0 · a1 ≡ b0 · b1 mod m (2.4)

Equation (2.2) shows that the order of adding and reducing modulo m may be exchanged.
Equations (2.3) and (2.4) show the same property for subtraction and multiplication modulo m,
respectively.

Typically, one performs addition, subtraction, and multiplication in Zm by performing the
corresponding integer operation and reducing the result modulo m. Then, all computations
take place in the set {0, 1, . . . , (m − 1)2}, i.e. the largest number appearing in an intermediate
result before reduction is (m− 1)2.
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2.2. Groups and Finite Fields

2.2.1. Groups

A group (G, ◦) is a set G with a binary operation ◦ : G × G → G such that the following four
axioms are satisfied:

Associativity: For all a, b, c ∈ G the equation (a ◦ b) ◦ c = a ◦ (b ◦ c) holds.

Identity element: There is an element e ∈ G such that for all a ∈ G the equation e◦a = a◦e = a
holds.

Inverse element: For each a ∈ G there exists an element b ∈ G such that a ◦ b = b ◦ a = e.

It is easy to see that for a group the identity element e is unique – and so is the inverse for
each element of the group.

If (G, ◦) is a group, then ◦ is called the group law. Often a group satisfies a ◦ b = b ◦ a for all
a, b ∈ G. Then G is said to be commutative or Abelian.

In practice, the group law is commonly written as an addition or a multiplication:

Additive Notation. The identity is denoted by 0. If g is an element of G, the inverse element
is denoted by −g. We define [k]g =

∑k
1 g, k ∈ N, as the sum of k times the element g.

Multiplicative Notation. The identity is denoted by 1. If g is an element of G, the inverse
element is denoted by g−1. We define gk =

∏k
1 g, k ∈ N, as the product of k times the element

g.

2.2.2. Group Order and Generators

Let G be a finite group, i.e. G contains n elements, n ∈ N. The number n is called the group
order and #G = n. As G is finite, for every g ∈ G an integer s with 1 ≤ s ≤ n exists such that
[s]g = 0. The smallest such number is written as #g, called the order of g in G. If s denotes
the order of g in G, then the following properties hold:

1. The order of the group is a multiple of the order of all its elements, i.e. s divides n.

2. For g 6= 1, the representation [k]g is unique, i.e. [k1]g = [k2]g if and only if k1 ≡ k2 mod s.

A finite group (G,+) of order n is called cyclic, if there is a group element g ∈ G with

G = {g, [2]g, [3]g, . . . , [n− 1]g, [n]g}.

In this case, the element g is called a generator of (G,+).

2.2.3. Subgroups

Let (G,+) be a finite group. A non-empty subset S ⊆ G is called a subgroup, if for any two
elements a, b ∈ S it holds that a− b ∈ S. Due to Lagrange’s theorem, #S is a divisor of #G .

For every a ∈ G the set

〈a〉 = {[k]a; 1 ≤ k ≤ #a}

is a cyclic subgroup of G.

Federal Office for Information Security 11
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2.2.4. Finite Fields

A field (F,+, ·) is a set F together with two operations + and · such that

1. + : F × F → F and · : F × F → F ,

2. (F,+) is an Abelian group,

3. (F \ {0}, ·) is an Abelian group,

4. (a+ b) · c = a · c+ b · c holds for all a, b, c ∈ F .

A finite field is a field with finitely many elements. It is a fundamental theorem of the theory
of finite fields that a finite field of q elements exists if and only if q is a prime power, i.e. q = pm

where p is a prime and m is an integer with m ≥ 1. In addition, for a given prime power q there
exists up to isomorphism only one finite field consisting of q elements. In the following, this field
is denoted by GF (q) or Fq.

As of today, two families of finite fields are used for elliptic curve cryptography in practice:

Prime fields: Finite fields Fp of p elements with p prime. In this case Fp is isomorphic to
(Zp,+, ·) (cf. Section 2.1), therefore in this Technical Guideline elements of Fp will be
regarded as integers in {0, 1, . . . , p− 1}.

Extension fields of characteristic 2: Finite fields F2m of 2m elements.

In this technical guideline, we focus mainly on elliptic curve cryptography over prime fields.

2.2.5. The Discrete Logarithm Problem (DLP)

The discrete logarithm problem (DLP) is defined as follows: Let G be a cyclic group of order n
with generator g. The discrete logarithm of h ∈ G to the base g, denoted by logg h, is the unique
integer k, 0 ≤ k ≤ n− 1, such that [k]g = h.

Given g and h, the discrete logarithm problem is to find k, which is assumed to be computa-
tionally intractable for the relevant groups in ECC for large n (cf. Section 2.3.3).

2.3. Elliptic Curves over prime fields

According to this guideline, it is RECOMMENDED to use elliptic curves over prime fields Fp
where p ≡ 3 mod 4 (cf. Section 3.2.2).

The security of elliptic curve cryptography is based on the hardness of the elliptic curve
discrete logarithm problem (cf. Section 2.3.3).

2.3.1. Elliptic Curve Groups

We introduce the basic facts of elliptic curves over a finite field Fp. Let E be an elliptic curve
over Fp. In this section it is assumed, that p 6= 2, 3. Then E may be described in terms of the
Weierstraß equation

y2 = x3 + ax+ b, a, b ∈ Fp, 4a3 + 27b2 6= 0. (2.5)

The requirement 4a3 + 27b2 6= 0 ensures that E is non-singular, this means in particular that
one may compute the tangent in every point on the curve.

Several different representations for elliptic curves exist. Within this guideline only the affine
representation (cf. Equation (2.5)) is used.
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The set of rational points in E over Fp denoted by E(Fp) is

E(Fp) = {(x, y) ∈ F2
p : y2 = x3 + ax+ b} ∪ {O}, (2.6)

where O is the point at infinity. It is the projective closure of the equation y2 = x3 + ax+ b and
may not be described in terms of two coordinates in Fp.
E(Fp) carries a group structure with the point at infinity acting as the identity element. The

binary operation of rational points in E(Fp) is commonly denoted as an addition. It turns out
that the addition of points in E(Fp) has a simple geometric interpretation, as shown in Figure
2.1, visualizing the operations on a elliptic curve defined over R.

Let P ∈ E(Fp) and Q ∈ E(Fp) be points on the elliptic curve. The addition law uses the
chord-tangent process where the following different cases have to be distinguished:

1. Let P + O = O + P = P for all P ∈ E(Fp). Thus O acts as the identity element in the
group E(Fp).

2. Let P 6= O and P = (xP , yP ). The point (xP ,−yP ) is an element of E(Fp) \ {O} and one
defines −P = (xP ,−yP ). Additionally, one sets −O = O. The identity P + (−P ) = O
holds for all P ∈ E(Fp).

3. Let P 6= O, and Q 6= O such that P 6= ±Q, i.e. P and Q have different x-coordinates.
The line through P and Q intersects E(Fp) in a third point R ∈ E(Fp) \ {O}. One sets
P +Q = −R.
This definition leads to the following addition rule: Set λ = (yQ − yP )/(xQ − xP ) and
P +Q = (xR, yR) (the denominator is different from zero, as xP 6= xQ). Then xR and yR
may be computed by the formulae

xR = λ2 − xP − xQ, yR = λ(xP − xR)− yP .

4. Let P 6= O, P 6= −P . The tangent to E(Fp) in P intersects E(Fp) in R ∈ E(Fp) \ {O},
and we set [2]P = −R.
This description leads to the following doubling rule: Set λ = (3x2P + a)/(2yP ) and [2]P =
(xR, yR). Then xR and yR may be computed by the formulae

xR = λ2 − 2xP , yR = λ(xP − xR)− yP .

The chord-tangent process for an elliptic curve over real numbers is shown in Figure 2.1. With
the definitions above (E(Fp),+) is an Abelian group.

The order of E(Fp) may be estimated due to a theorem of Hasse:

p+ 1− 2
√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p. (2.7)

Hasse’s theorem shows #E(Fp) ≈ p, i.e. p and #E(Fp) are of same order of magnitude.

2.3.2. Elliptic Curve Domain Parameters

Elliptic curve domain parameters yield a set of information for communicating parties to identify
a certain elliptic curve group for use in cryptography. The domain parameters comprise the finite
field Fp, the coefficients a and b of the Weierstraß equation, a base point G ∈ E(Fp), its order n,

and finally the cofactor h =
#E(Fp)

n . The base point G generates a cyclic subgroup of order n in
E(Fp) denoted by 〈G〉, i.e.:

〈G〉 = {G, [2]G, [3]G, . . . , [n− 1]G, [n]G}.

Table 2.1 summarizes the domain parameters of an elliptic curve defined over Fp with p > 3.
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Figure 2.1.: Operations on an elliptic curve E(R).

Parameter Comment

p A prime number specifying the underlying field Fp.
a The first coefficient of the Weierstraß equation E.

b The second coefficient of the Weierstraß equation E.

G A base point in E(Fp).
n The order of G in E(Fp).
h The cofactor of G in E(Fp).

Table 2.1.: Elliptic curve domain parameters over Fp.

2.3.3. Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem (ECDLP) is defined as follows: Given the elliptic
curve domain parameters as described above and a point P ∈ 〈G〉, find the unique integer k,
0 ≤ k ≤ n− 1 such that P = [k]G.

This is a special case of the general discrete logarithm problem as explained in Section 2.2.5.

An elliptic curve group is called cryptographically strong if the underlying ECDLP is considered
to be computationally intractable for the application in use.

Cryptographically strong elliptic curve groups for different security levels are published by
various standardization bodies (e.g. ANSI, ISO, IETF, NIST).

2.3.4. Cryptographically Strong Elliptic Curve Domain Parameters over Fp
Cryptographically strong elliptic curve domain parameters SHALL be used (see also [7], [9] and
[32] for the generation of suitable curves). The ECDLP is currently considered to be intractable,
if at least the following conditions hold :

1. The order n of the base point G MUST be a prime of at least 224 bits.

2. To avoid the elliptic curve to be anomalous the order n MUST be different from p.

3. The ECDLP MUST NOT be reducible to the DLP in a multiplicative group Fpr for a
’small’ integer r. Thus, it is REQUIRED that pr 6≡ 1 mod n for all 1 ≤ r ≤ 104.
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4. The class number of the principal order belonging to the endomorphism ring of E SHOULD
be at least 200. 1

However, as the generation and validation of domain parameters is non-trivial (cf. for example
[7]), it is RECOMMENDED to use standardized domain parameters, generated by trusted third
parties. Cryptographically strong domain parameters can be found in Section 6.

1If an elliptic curve is generated at random, this curve respects this requirement with a very high probability (cf.
[7], [9] and [32] for the generation and validation of domain parameters, and the calculation of class numbers).
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3. Data Types and Data Conversion

The cryptographic algorithms specified in this guideline involve operations using several different
data types. These data types are considered as abstract data types consisting of distinct sets of
elements, e.g. an octet string is regarded as distinct from a bit string. This distinction helps to
clarify the requirements placed on implementations and helps to avoid subtle coding errors.

In all, five data types are employed in this document:

1. Octet strings (OS)

2. Bit strings (BS)

3. Integers (I)

4. Field elements (FE)

5. Elliptic curve points (ECP)

It is often necessary to convert one data type into another one. Section 3.1 describes the
conversion routines as summarized in Table 3.1. Section 3.2 describes two encoding mechanisms
for elliptic curve points.

Conversion routine Abbreviation Section

Bit String to Octet String BS2OS 3.1.1

Octet String to Bit String OS2BS 3.1.1

Integer to Octet String I2OS 3.1.2

Octet String to Integer OS2I 3.1.2

Finite Field Element to Octet String FE2OS 3.1.3

Octet String to Finite Field Element OS2FE 3.1.3

Table 3.1.: Conversion routines for data types used in this guideline.

3.1. Conversion Routines

The big endian notation is assumed to be used in the following conversion routines.

3.1.1. Conversion between Bit Strings and Octet Strings

BS2OS

The data conversion primitive that converts a bit string to an octet string is called Bit String
to Octet String Conversion Primitive or BS2OS. It takes a bit string of length d as input and
outputs the corresponding octet string of length l = dd/8e. The bit string and the octet string
are written as bd−1 bd−2 · · · b1 b0 and Ml−1 Ml−2 · · · M1 M0, respectively.

The conversion is quite simple: One simply pads enough zeros on the left of the bit string
to make its length a multiple of 8, and then chops the padded bit string up into octets. More
precisely, one proceeds as follows:
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1. l = dd/8e.

2. For 0 ≤ i ≤ l − 2 do Mi = b8i+7 b8i+6 · · · b8i+2 b8i+1 b8i.

3. Ml−1 = 0 · · · 0 bd−1 · · · b8(l−1)+1 b8(l−1), where the number of zeros at the left of Ml−1 is
equal to 8l − d.

4. Output Ml−1 Ml−2 · · ·M1 M0.

OS2BS

The data conversion primitive that converts an octet string to a bit string is called Octet String
to Bit String Conversion Primitive or OS2BS. It takes an octet string of length l as input and
outputs the corresponding bit string of length d = 8l. Assume that the octet string and the bit
string are written as Ml−1 Ml−2 · · · M1 M0 and bd−1 bd−2 · · · b1 b0, respectively.

Each octet is interpreted as a bit string of length 8. The result is then the concatenation of
these bit strings. More precisely, one proceeds as follows:

1. d = 8l.

2. For 0 ≤ i ≤ l − 1 do b8i+7 b8i+6 · · · b8i+2 b8i+1 b8i = Mi.

3. Output bd−1 bd−2 · · · b1 b0.

3.1.2. Conversion between Integers and Octet Strings

I2OS

The data conversion primitive that converts integers to octet strings is called Integer to Octet
String Conversion Primitive or I2OS. It takes a non-negative integer x and the desired length l
of the octet string as input. The length l has to satisfy 256l > x. I2OS outputs the corresponding
octet string. If 256l ≤ x, the conversion algorithm SHALL output error.

The idea is to write a non-negative integer x in its unique l-digit representation to the base
256:

x = xl−1 · 256l−1 + xl−2 · 256l−2 + · · ·+ x1 · 256 + x0, 0 ≤ xi < 256 for 0 ≤ i ≤ l − 1.

As usual, the leftmost bit in each digit xi is the most significant bit. We denote the octet string
by Ml−1 Ml−2 · · · M1 M0. One sets Mi = xi for 0 ≤ i ≤ l − 1.

Note: One or more leading digits will be zero if x < 256l−1.

OS2I

The primitive that converts octet strings to integers is called Octet String to Integer Conversion
Primitive or OS2I. It takes a non-empty octet string of length l ∈ N as input and outputs the
corresponding integer x as explained below. In addition, for empty octet strings, i.e. l = 0, this
guideline defines x = 0.

Let the octet string be Ml−1 Ml−2 · · · M1 M0. Each octet is interpreted as a non-negative
integer to the base 256, where the leftmost bit is the most significant one, i.e. one sets xi = Mi

for 0 ≤ i ≤ l − 1. Then

x = xl−1 · 256l−1 + xl−2 · 256l−2 + · · ·+ x1 · 256 + x0.
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Note: The octet string of length zero (the empty octet string) is converted to the integer 0.

3.1.3. Conversion between Field Elements and Octet Strings

FE2OS

The primitive that converts field elements to octet strings is called Field Element to Octet String
Conversion Primitive or FE2OS. It takes a field element as input and outputs the corresponding
octet string.

A field element x ∈ Fp is converted to an octet string of length l = dlog256 pe by applying
the conversion function I2OS as described in Section 3.1.2 with parameter l, i.e. FE2OS(x) =
I2OS(x, l). Here the element x ∈ Fp is represented as an integer x ∈ {0, 1, . . . , p− 1} (cf. Section
2.2.4).

OS2FE

The primitive that converts octet strings to field elements is called Octet String to Field Element
Conversion Primitive or OS2FE. It takes an octet string as input and outputs the corresponding
field element.

An octet string X is converted to a field element by applying the conversion function OS2I as
described in Section 3.1.2 and reducing the output modulo p, i.e. OS2FE(X) = OS2I(X) mod p.

3.2. Encoding Elliptic Curve Points

Let p be a prime p 6= 2, 3 and let E be an elliptic curve over Fp given by its Weierstraß equation
y2 = x3 + ax+ b. Let P ∈ E(Fp) be a point on the elliptic curve. This guideline represents the
point P by an octet string:

• If P 6= O, the point is represented by its affine coordinate(s). Either a compressed (PC)
or an uncompressed (PU ) encoding is used.

• If P = O, the point is always represented by the single octet 0x00 independent of the
encoding.

3.2.1. Uncompressed Encoding

In uncompressed encoding the point P is represented by two field elements, its x-coordinate
denoted by xP and its y-coordinate denoted by yP . If b is the bit length of p, storing (xP , yP )
requires 2b bits (excluding additional data required for the encoding).

Encoding

The uncompressed encoding PU is defined as PU = C ‖ X ‖ Y , where

• C = 0x04

• X = FE2OS(xP )

• Y = FE2OS(yP )

Decoding

Given PU the point P is recovered as P = (OS2FE(X), OS2FE(Y )). Before using P it MUST be
validated that P is indeed a point on the elliptic curve E by checking that y2P = x3P + axP + b.

18 Federal Office for Information Security



Technical Guideline - Elliptic Curve Cryptography

3.2.2. Compressed Encoding

In compressed encoding the point P is represented by its x-coordinate xP and an additional
bit to uniquely identify the y-coordinate yP . More precisely, the bit y′P is defined to be the
rightmost bit of yP , i.e. y′P = 0 if and only if yP is even.

Encoding

The compressed encoding PC is defined as PC = C ‖ X, where

• If y′P = 0, set C = 0x02

• If y′P = 1, set C = 0x03

• X = FE2OS(xP )

Decoding

Given PC the point P is recovered as P = (OS2FE(X), yP ), where the following algorithm is used
to calculate yP :

1. Set α = x3P + axP + b.

2. Check whether α is a square in Fp. If α is a non-square, output error and terminate.

3. If α = 0, then yP = 0. Output yP and terminate.

4. Compute a square root β ∈ Fp of α in Fp.

5. If the rightmost bit of β is equal to y′P , then yP = β. Otherwise, yP = p− β. Output yP
and terminate.

To efficiently check whether α is a square in Fp, the Legendre-Symbol(
α

p

)
≡ α(p−1)/2 mod p

can be used. More precisely, α is a square in Fp if and only if
(
α
p

)
= 1.

Note: According to this guideline primes p ≡ 3 mod 4 are RECOMMENDED. In this case,
the square roots ±β of α can be efficiently computed as β = α(p+1)/4 mod p.
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4. Elliptic Curve Cryptography Algorithms

This section specifies cryptographic algorithms for elliptic curves: Section 4.1 provides definitions
for auxiliary functions, i.e. random number generators, hash functions, and key generation.
In Section 4.2, the elliptic curve based digital signature algorithms ECDSA, ECGDSA and
EC-Schnorr are specified. Subsequently, the key agreement algorithm ECKA and PACE are
described in Sections 4.3 and 4.4, respectively.

4.1. Auxiliary Functions and Algorithms

4.1.1. Random and Pseudo-Random Number Generators

Random number generators are often based on physical processes like radioactive decay or
unpredictable events like the time between two strikes on a keyboard.

In practice, pseudo-random number generators (non-physical) are often used for efficiency
reasons. Roughly speaking, the output of a pseudo-random number generator should be indis-
tinguishable from the output of a true random number generator.

Functionality classes and evaluation methodologies for pseudo-random number generators and
physical random number generators are published in an appendix to AIS 20/31 [3]. This docu-
ment replaces the former appendices of AIS 20 [1] and AIS 31 [2], respectively.

In this technical guideline, the notation RNG({1, 2, . . . , n−1}) is used to denote both a random
number generator and a pseudo-random number generator. The input of the function RNG is a
finite set of positive integers, its output is a number randomly or pseudo-randomly chosen from
this set.

The outputs of RNG({1, 2, . . . , n − 1}) SHALL be (almost) uniformly distributed within
{1, 2, . . . , n − 1}. For the generation of nonces and cryptographical keys (including ephemeral
keys), it is RECOMMENDED to use a (pseudo-)random number generator of one of the following
classes:

• Pseudo-random number generators:

– DRG.2,

– DRG.3,

– DRG.4.

• Physical random number generators:

– PTG.3.

Note: Beside the listed generators, also random number generators evaluated according to
the former version (AIS 20 [1], AIS 31 [2]) of AIS20/31 MAY be used. Then, it is RECOM-
MENDED to take a pseudo-random number generator of the class K4 or a physical random
number generator of the class P2 whose output is mathematical post-processed.

In many applications RNG({1, 2, . . . , n − 1}) is derived from RNG({0, 1, 2, . . . , 2k − 1}) with
2k ≥ n. In this case the implementor MUST ensure that the (almost) uniform distribution of
RNG({0, 1, 2, . . . , 2k−1}) is maintained in RNG({1, 2, . . . , n−1}). The following two algorithms
are provided as an example. More information and additional algorithms can be found in TR-
02102 [11].
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Algorithm 1: This algorithm maintains uniform distribution but has probabilistic run-time.

1. r = RNG({0, 1, 2, . . . , 2k − 1})
2. If (r < n) and (r > 0), output r else goto 1.

Algorithm 2: This algorithm has deterministic run-time but does not fully maintain uniform
distribution.

1. r = RNG({0, 1, 2, . . . , 2k+64 − 1})
2. Output (r mod (n− 1)) + 1

Note: The usage of a non-uniformly distributed RNG({1, 2, . . . , n−1}) can enable an attack
on signature algorithms (cf. Bleichenbacher’s attack on DSA, described e.g. in [29]). Algo-
rithm 2 does not provide uniform distribution. It is however assumed that the deviation from
uniform distribution produced by Algorithm 2 is too small to be exploited by an attacker.

4.1.2. Cryptographically Strong Hash Functions

A hash function H maps a message M to a hash value (digest) D = H(M). The message M is
an octet string of arbitrary length1 and the hash value D is an octet string of fixed length d`/8e,
where ` is the bit length of the hash values produced by H():

H: {0, . . . , 255}∗ 7→ {0, . . . , 255}d`/8e

In some cases the hash values have to be truncated. Let Hl(M) be the truncated hash value
of M , i.e. the hash value H(M) is cropped to the l leftmost bits. Hl(M) SHALL be encoded as
octet string using the BS2OS conversion.

A hash function suitable for cryptography, has to satisfy the following requirements:

Preimage resistance: For any hash value D, it is computationally infeasible to find a message
M with H(M) = D.

Second preimage resistance: For any message M , it is computationally infeasible to find a
message M ′ with M 6= M ′ and H(M) = H(M ′).

Collision resistance: It is computationally infeasible to find arbitrary messages M and M ′

with M 6= M ′ and H(M) = H(M ′).

If H fulfills all these requirements, it is said to be cryptographically strong.
Hash functions with an output length ` ≥ 224 SHALL be used. Some hash functions are

weaker than previously believed (cf. [34]). The hash functions listed in Table 4.1 are supported
by this specification.

Hash Function Hash Length (bit) Reference

SHA-224 224 [13]

SHA-256 256 [13]

SHA-384 384 [13]

SHA-512 512 [13]

Table 4.1.: Supported hash functions.

For session key derivation (cf. section 4.3.3), also the hash functions SHA-1 and RIPEMD-160
(cf. [13], [18]) MAY be used.

1Most hash functions have a restriction on the length of M .
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4.1.3. Elliptic Curve Key Pair Generation – ECKeyPair

An elliptic curve key pair consists of a public key P and a private key d. A key pair is generated
as follows.

Input: Cryptographically strong elliptic curve domain parameters (p, a, b,G, n, h).

Output: The key pair (d, P ).

Actions: The following actions are performed:

1. d = RNG({1, 2, . . . , n− 1})
2. P = [d]G

(If P is generated for ECGDSA or ECKCDSA, set P = [d−1 mod n]G instead).

3. Output (d, P )

4.2. Elliptic Curve Based Signature Algorithms

This section specifies the signature algorithms ECDSA, ECGDSA and EC-Schnorr. For that
purpose, it is assumed in the following that A sends B a message M and the corresponding
signature (r, s). Furthermore, it is assumed that the message M also includes information
identifying the public key, the signature algorithm and the hash function H() to be used for the
verification of the signature. An example for such a signature format is given in Section 5.2.

Note: It is RECOMMENDED to use a hash function H() (cf. Section 4.1.2) with an output
length ` = τ , i.e. the output length of the hash function and the bit length of the order of the
base point G SHOULD be equal. If for any reason the hash function has to be chosen such
that ` > τ , the hash value SHALL be truncated to Hτ (M), the τ leftmost bits of H(M).

The hash function SHOULD NOT be chosen such that ` < τ .

4.2.1. The Elliptic Curve Digital Signature Algorithm – ECDSA

This section describes the Elliptic Curve Digital Signature Algorithm abbreviated by ECDSA.
The description is in conformance with [4].

4.2.1.1. Signature Algorithm

A proceeds as follows to generate the ECDSA signature (r, s) on the message M .

Input: The following inputs are needed:

1. A’s private key dA and the elliptic curve domain parameters (p, a, b,G, n, h).

2. The message M to be signed.

Output: The ECDSA signature (r, s) over M .

Actions: The following actions are performed:

1. k = RNG({1, 2, . . . , n− 1})
2. Q = [k]G

3. r = OS2I(FE2OS(xQ)) mod n

If r = 0 goto 1.

4. kinv = k−1 mod n
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5. s = kinv · (r · dA + OS2I(Hτ (M))) mod n

If s = 0 goto 1.

6. Output (r, s)

Note: The signature depends on the random number k. If A signs the same document M
twice, both signatures differ with a very high probability.

4.2.1.2. Verification Algorithm

B proceeds as follows to verify the received ECDSA signature (r, s) on M .

Input: The following inputs are needed:

1. A’s authentic public key PA and the domain parameters (p, a, b,G, n, h).

2. The signed message M .

3. The ECDSA signature (r, s).

Output: True, if the signature is valid, and False otherwise.

Actions: The following actions are performed:

1. Verify that r, s ∈ {1, 2, . . . , n− 1}
If the check fails, output False and terminate.

2. sinv = s−1 mod n

3. u1 = sinv · OS2I(Hτ (M)) mod n

u2 = sinv · r mod n

4. Q = [u1]G+ [u2]PA

If Q = O, output Error and terminate.

5. v = OS2I(FE2OS(xQ)) mod n

6. Output True if v = r, and False otherwise.

4.2.2. The Elliptic Curve German Digital Signature Algorithm - ECGDSA

This section introduces the Elliptic Curve German Digital Signature Algorithm. The specifica-
tion matches with [23]. In the ECGDSA scheme, the elliptic curve point P ′A := [d−1A mod n]G
is used as public key. As a consequence, the signature creation requires no computation of a
multiplicative inverse mod n.

4.2.2.1. Signature Algorithm

A proceeds as follows to generate the ECGDSA signature (r, s) on a message M .

Input: The following information is required as input:

1. A’s private key dA and the elliptic curve domain parameters (p, a, b,G, n, h).

2. The message M to be signed.

Output: The ECGDSA signature (r, s) over M .

Actions: The following actions are performed:

1. k = RNG({1, 2, . . . , n− 1})
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2. Q = [k]G

3. r = OS2I(FE2OS(xQ)) mod n

If r = 0 goto 1.

4. s = (k · r − OS2I(Hτ (M))) · dA mod n

If s = 0 goto 1.

5. Output (r, s)

Note: The signature depends on the random number k. If A signs the same document M
twice, both signatures differ with a very high probability.

4.2.2.2. Verification Algorithm

To verify the received ECGDSA signature (e, s) on a message M , B has to proceed as follows.

Input: The following inputs are needed:

1. A’s authentic public key PA and the domain parameters (p, a, b,G, n, h).

2. The signed message M .

3. The ECGDSA signature (r, s).

Output: True, if the signature is valid, and False otherwise.

Actions: The following actions are performed:

1. Verify that r, s ∈ {1, 2, . . . , n− 1}
If the check fails, output False and terminate.

2. rinv = r−1 mod n

3. u1 = rinv · OS2I(Hτ (M)) mod n

u2 = rinv · s mod n

4. Q = [u1]G+ [u2]PA

If Q = O, output Error and terminate.

5. v = OS2I(FE2OS(xQ)) mod n

6. Output True if v = r, and False otherwise.

4.2.3. The Elliptic Curve Based Schnorr Signature Algorithm - EC-Schnorr

This section describes the Elliptic Curve Based Schnorr Signature Algorithm (EC-Schnorr)2,
which is described in the following. The scheme requires no computation of a multiplicative
inverse modulo n during the siganture creation.

4.2.3.1. Signature Algorithm

A proceeds as follows to generate the EC-Schnorr signature (r, s) on a message M .

Input: The following information is required as input:

1. A’s private key dA and the elliptic curve domain parameters (p, a, b,G, n, h).

2. The message M to be signed.

2For the Schnorr signature, see also [33].
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Output: The EC-Schnorr signature (r, s) over M .

Actions: The following actions are performed:

1. k = RNG({1, 2, . . . , n− 1})

2. Q = [k]G

3. r = OS2I(Hτ (M ‖ FE2OS(xQ)))

If r = 0 mod n, goto 1.

4. s = k − r · dA mod n

If s = 0 goto 1.

5. Output (r, s)

Note: The signature depends on the random number k. If A signs the same document M
twice, both signatures differ with a very high probability.

4.2.3.2. Verification Algorithm

Given a EC-Schnorr signature (r, s) on a message M , the verification procedure is the following

Input: The following inputs are needed:

1. A’s authentic public key PA and the domain parameters (p, a, b,G, n, h).

2. The signed message M .

3. The EC-Schnorr signature (r, s).

Output: True, if the signature is valid, and False otherwise.

Actions: The following actions are performed:

1. Verify that r ∈ {0, . . . , 2τ − 1} and s ∈ {1, 2, . . . , n− 1}.

If the check fails, output False and terminate.

2. Q = [s]G+ [r]PA

If Q = O, output Error and terminate.

3. v = OS2I(Hτ (M ‖ FE2OS(xQ)))

4. Output True if v = r, and False otherwise.

4.3. The Elliptic Curve Key Agreement Algorithm – ECKA

This section describes the Elliptic Curve Key Agreement Algorithm (ECKA), key derivation
functions, and the key agreement protocols of Diffie-Hellman (ECKA-DH) and ElGamal (ECKA-
EG). The description of ECKA is in conformance with [5].

Note: To prevent attacks based on invalid (ephemeral) public keys it MUST be checked that
a received public key is indeed a point on the elliptic curve. This validation is already part of
the point decoding algorithms (cf. Section 3.2). In addition to this, small subgroup attacks
are prevented by using (compatible) cofactor multiplication in the key agreement algorithms.
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4.3.1. Key Agreement Algorithm

A and B proceed as follows to generate a shared secret point SAB:

Input: The private key d̂, the public key P̂ , and the elliptic curve domain parameters
(p, a, b,G, n, h). The private key d̂ and the public key P̂ SHALL be either both
ephemeral (ECKA-DH, cf. Section 4.3.2.1) or ephemeral-static (ECKA-EG, cf. Sec-
tion 4.3.2.2).

Output: The output consists of:

1. The shared secret point SAB.

2. The shared secret value ZAB (OPTIONAL).

Actions: The following actions are performed:

1. l = h−1 mod n

2. Q = [h]P̂

3. SAB = [d̂ · l mod n]Q

If SAB = O, output Error and terminate.

4. ZAB = FE2OS(xSAB
) (OPTIONAL)

5. Output SAB and conditionally ZAB

Note: To derive keys for symmetric encryption and/or integrity protection the OPTIONAL
generation of ZAB MUST be performed. The shared secret value ZAB MUST NOT be used
directly for encryption or integrity protection, key derivation functions are described in Section
4.3.3.

4.3.2. The Key Agreement Protocols ECKA-DH and ECKA-EG

To interactively generate a shared secret point SAB (or a shared secret value ZAB), A and B may
use one of the following protocols.

4.3.2.1. Anonymous Diffie-Hellman Key Agreement (ECKA-DH).

Both A and B agree on the domain parameters (p, a, b,G, n, h), the key derivation algorithm,
the cipher and/or message authentication code to be used and perform the following steps:

Initiator A Recipient B

(d̃A, P̃A) = ECKeyPair(p, a, b,G, n, h)
P̃A


P̃B

(d̃B, P̃B) = ECKeyPair(p, a, b,G, n, h)

SAB = ECKA(d̃A, P̃B, (p, a, b,G, n, h)) SAB = ECKA(d̃B, P̃A, (p, a, b,G, n, h))

Table 4.2.: ECKA-DH.

4.3.2.2. ElGamal Key Agreement (ECKA-EG).

The recipient B must make the static public key PB including the corresponding domain pa-
rameters (p, a, b,G, n, h) publicly available in an authentic form and performs the steps of table
4.3.
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Initiator A Recipient B

(d̃A, P̃A) = ECKeyPair(p, a, b,G, n, h)

SAB = ECKA(d̃A, PB, (p, a, b,G, n, h))
M=(P̃A,...)−→ SAB = ECKA(dB, P̃A, (p, a, b,G, n, h))

Table 4.3.: ECKA-EG.

To send B an encrypted and/or integrity protected messageM , A MUST include the ephemeral

public key P̃A and information identifying the key derivation algorithm, the cipher and/or the
message authentication code to be used. An example for a message format is given in Section
5.3.1.1.

4.3.3. Key Derivation Functions

The following algorithms are RECOMMENDED to derive keys from the shared secret value
ZAB:

X9.63 Key Derivation Function. ANSI X9.63 [5] describes a method for converting a shared
secret to a cryptographic key. The algorithm KDFX9.63() requires to select a hash function H()
from Section 4.1.2. Let ` denote the bit length of the hash value.

Input: The following inputs are needed:

1. An octet string ZAB, which is the shared secret value.

2. An integer κ < ` · (232 − 1), which is the bit length of the keying data to be
generated.

3. An octet string SharedInfo, which consists of some information shared between
A and B (OPTIONAL).

Output: The octet string KeyData of length k = dκ/8e.

Actions: The following actions are performed:

1. Let counter be a 32 bit, big-endian integer, initialized with 0x00000001.

2. j = dκ/`e
3. For i = 1 to j − 1 do the following:

a) Hi = H(ZAB ‖ counter ‖ [SharedInfo])

b) counter = counter + 1

c) i = i+ 1

4. l = κ− (` · (j − 1))

5. Hj = Hl(ZAB ‖ counter ‖ [SharedInfo])

6. KeyData = H1 ‖ H2 ‖ · · · ‖ Hj−1 ‖ Hj

7. Output KeyData

Key Derivation Function for Session Keys. This paragraph describes a method for de-
riving cryptographic session keys of bit length κ, i.e. keys for symmetric encryption and for
computing message authentication codes (MAC). The algorithm KDFSession requires to select
a hash function H() from Section 4.1.2 with bit length ` ≥ κ.
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Input: The following inputs are needed:

1. An octet string ZAB, which is a shared secret value.

2. A 32-bit, big-endian integer counter, which is initiated as follows:

a) Default key used for encryption:

counter = 0x00000001

b) Default key used for authentication:

counter = 0x00000002

c) Alternative key used for encryption:

counter = 0x00000003

d) Alternative key used for authentication:

counter = 0x00000004

e) ...

3. A nonce r encoded as octet string (OPTIONAL).

Output: An octet string KeyData.

Actions: The following actions are performed:

1. D = ZAB ‖ r ‖ counter

2. KeyData = Hκ(D)

3. Output KeyData

4.3.3.1. Key Derivation for DES.

To derive 112-bit 3DES keys the hash function SHA-1 SHALL be used with κ = 112. The parity
bits of KeyData MAY be adjusted to form correct DES keys.

4.3.3.2. Key Derivation for AES.

• To derive 128-bit AES keys the hash function SHA-1 with κ = 128 SHALL be used.

• To derive 192-bit AES keys the hash function SHA-256 with κ = 192 SHALL be used.

• To derive 256-bit AES keys the hash function SHA-256 with κ = 256 SHALL be used.

4.4. The Password Authenticated Connection Establishment –
PACE

This section describes the Password Authenticated Connection Establishment protocol, abbre-
viated by PACE. The protocol establishes a secure channel with strong session keys based on
an authentication by means of a secret password (which MAY have low entropy).

A and B choose a key derivation function KDFSession (e.g. the one of the section 4.3.3).
Furthermore, they agree on a suitable mapping function Map() (e.g. the mapping function
GMap() of section 4.4.1), a symmetric cipher (with encryption and decryption denoted by E()
and E−1(), respectively), the message authentication code MAC(). Keys, input and output
values of E() and MAC() are assumed to be octet strings. Let v be a fixed multiple of the block
size of E().
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As input, the PACE protocol requires the shared password π and the elliptic curve domain
parameters D = (p, a, b,G, n, h). The following actions are performed to establish the secure
channel:

Initiator A Recipient B

0. Kπ = KDFSession(π, 3) Kπ = KDFSession(π, 3)
1. s = RNG({0, . . . , 2v − 1})
2. z = E(Kπ, FE2OS(s))

3. Send z
z−→

4. s = OS2FE(E−1(Kπ, z))

5. D̃ = (p, a, b, G̃, n, h) = Map(D, s) 
 D̃ = (p, a, b, G̃, n, h) = Map(D, s)

6. (ỹA, ỸA) = ECKeyPair(D̃)
ỸA


ỸB

(ỹB, ỸB) = ECKeyPair(D̃)

7. (SAB, ZAB) = ECKA(ỹA, YB, D̃) (SAB, ZAB) = ECKA(yB, ỸA, D̃)

8. KEnc = KDFSession(ZAB, 1) KEnc = KDFSession(ZAB, 1)
9. KMac = KDFSession(ZAB, 2) KMac = KDFSession(ZAB, 2)

10. TB = MAC(KMac, ỸA)
11. ←−

TB
Send TB

12. If TB 6= MAC(KMac, ỸA),
output Error and terminate.

13. TA = MAC(KMac, ỸB)
14. Send TA −→

TA

15. If TA 6= MAC(KMac, ỸB),
output Error and terminate.

Table 4.4.: PACE.

A detailed specification for an implementation of PACE on smartcards is contained in [12], a
security proof of the protocol can be found in [8].

Note: For the generation of nonces in the PACE protocol, a (pseudo-)random number gene-
rator belonging to the classes K4, DRG.3, DRG.4 or PTG.3 MUST be used.

4.4.1. The Generic Mapping – GMap()

To map a nonce s to a point of the elliptic curve A and B SHOULD use the generic mapping
GMap(). It is based on an anonynous Diffie-Hellman key agreement. The required input for the
generic mapping are the domain parameters (p, a, b,G, n, h) of the curve and the nonce s that
shall be mapped. Then, the protocol produces ephemeral domain parameters D̃ = GMap(D, s)
by computing a new base point G̃ of the curve.

Initiator A Recipient B

1. (d̃A, P̃A) = ECKeyPair(p, a, b,G, n, h)
P̃A


P̃B

(d̃B, P̃B) = ECKeyPair(p, a, b,G, n, h)

2. H = ECKA(d̃A, P̃B, (p, a, b,G, n, h)) H = ECKA(d̃B, P̃A, (p, a, b,G, n, h))

3. D̃ = GMap(D, s) = (p, a, b, [s]G+H,n, h) D̃ = GMap(D, s) = (p, a, b, [s]G+H,n, h)

Table 4.5.: Generic Mapping.
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5. Input and Output Formats

This section specifies data structures and object identifiers for in- and output of public keys,
signatures, and key agreement.

The object identifier bsi-de represents the root of the subtree containing all objects defined
in this specification:

bsi-de OBJECT IDENTIFIER ::= {

itu-t(0) identified-organization(4) etsi(0)

reserved(127) etsi-identified-organization(0) 7

}

The root identifier for elliptic curve cryptography is:

id-ecc OBJECT IDENTIFIER ::= { bsi-de algorithms(1) 1 }

This guideline also supports the data structures and object identifiers specified in ANSI X9.62
[4]. The root identifier for ANSI X9.62 is:

ansi-X9-62 OBJECT IDENTIFIER ::= {

iso(1) member-body(2) us(840) 10045 }

5.1. Public Key Format

It is RECOMMENDED to store and exchange elliptic curve public keys in X9.62 format. In
this case the data structures and object identifiers specified by X9.62 [4] SHALL be used.

If, however, elliptic curve cryptography is performed on smartcards, public keys SHALL be
encoded as data objects as defined in ISO 7816-8 [26].

5.1.1. X9.62 Format

Public keys represented in X.509 syntax have the following ASN.1 structure:

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING

}

The component algorithm of type AlgorithmIdentifier specifies the type of the public key
and its associated parameters. The component subjectPublicKey of type BIT STRING specifies
the actual value of the public key.

The elliptic curve public key is a value of type ECPoint, which is simply an OCTET STRING

as defined in Section 3.2. The conversion routine OS2BS SHALL be used to map the value to a
BIT STRING.

Public keys in X9.62 format are identified by the object identifier id-ecPublicKey which is
specified as follows:

id-publicKeyType OBJECT IDENTIFIER ::= { ansi-X9-62 keyType(2) }

id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
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The public key parameters contained in the AlgorithmIdentifier are defined as a choice of
three alternatives:

Parameters ::= CHOICE {

ecParameters ECParameters,

namedCurve OBJECT IDENTIFIER,

implicitlyCA NULL

}

ecParameters: The domain parameters are explicitly described.

namedCurve: Standardized domain parameters identified by an object identifier are used.

implicitlyCA: The domain parameters are inherited or implicitly known.

It is RECOMMENDED to use the alternatives ecParameters or namedCurve unless ephemeral
public keys are exchanged. In this case implicitlyCA SHOULD be used instead.

Note: These recommendations deviate from [31], 2.1.1. Implementations that strive for
conformance to [31] MUST only support namedCurve.

The structure ECParameters is used to describe domain parameters explicitly. Version 1
MUST be used. It is specified as follows:

ECParameters ::= SEQUENCE {

version INTEGER{ecpVer1(1)} (ecpVer1),

fieldID FieldID,

curve Curve,

base ECPoint,

order INTEGER,

cofactor INTEGER OPTIONAL,

...

}

Curve ::= SEQUENCE {

a FieldElement,

b FieldElement,

seed BIT STRING OPTIONAL

}

FieldElement ::= OCTET STRING

ECPoint ::= OCTET STRING

FieldID ::= SEQUENCE {

fieldType OBJECT IDENTIFIER,

parameters ANY DEFINED BY fieldType

}

id-fieldType OBJECT IDENTIFER ::= { ansi-X9-62 fieldType(1) }

prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }

Prime-p ::= INTEGER

If FieldID refers to a prime-field, Prime-p SHALL be used as parameter.
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5.1.2. ISO 7816 Format

For smartcards public keys and domain parameters MUST be exchanged as TLV (Tag-Length-
Value) encoded data objects as described in ISO 7816-8 [26]. The tags and the encodings for
data objects relevant to elliptic curves are given in Table 5.1.

According to this guideline the data object for domain parameters MUST either be all present
or all absent. Especially for ephemeral public keys the domain parameters are usually implicitly
known and MUST be all absent.

Public keys and domain parameters MUST be encapsulated in a constructed public key data
object identified by tag 0x7F49 unless the domain parameters and the key type are implicitly
known and omitted.

Unrestricted public keys data objects are identified by the object identifier id-ecTLVPublicKey
which is specified as follows:

id-ecTLVKeyFormat OBJECT IDENTIFIER ::= { id-ecc keyType(2) 2}

id-ecTLVPublicKey OBJECT IDENTIFIER ::= { id-ecTLVKeyFormat unrestricted(1) }

A restricted public key type for usage with dedicated ECC algorithms (for instance ECDSA,
ECGDSA) may be defined in a later version of this specification.

Object Type Symbol Tag

Algorithm Object Identifier – 0x06

Prime modulus Integer p 0x81

First coefficient Integer a 0x82

Second coefficient Integer b 0x83

Base point Point G 0x84

Order of the base point Integer n 0x85

Public Key Point P 0x86

Cofactor Integer h 0x87

Table 5.1.: Tags for elliptic curve public keys and domain parameters over Fp.

Note: This guideline deviates from ISO 7816 in the encoding of elliptic curve points.

5.2. Signature Format

While this guideline supports the signature format specified by ANSI X9.62 [4] for ECDSA, the
usage of the plain format is RECOMMENDED for all applications. The plain format MUST be
used if the signature is generated or verified by a smartcard.

The signature algorithm and the signature format are identified by an AlgorithmIdentifier,
the hash function to be used is either referenced directly by the object identifier or by the
parameters of the AlgorithmIdentifier.

It is RECOMMENDED to reference the hash function to be used directly in the object
identifier. In this case the parameters MAY be either absent or null. The recipient MUST be
able to interpret both variants.1

1According to RFC 5480 [31], the parameters MUST be absent for algorithms identified by ecdsa-with-SHAxxx.
According to ANSI X9.62 [4] the parameters SHOULD be absent, but implementations SHALL accept NULL
parameters. This guideline explicitly allows both variants.
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Note: Signature algorithms with hash functions SHA-1 or RIPEMD-160 SHALL NOT be
used anymore and are only included for backwards compatibility.

5.2.1. Plain Format

In plain format the signature (r, s) is encoded as octet string R ‖ S, i.e. as concatenation of the
octet strings R = I2OS(r, l) and S = I2OS(s, l) with l = dlog256 ne. Thus, the signature has a
fixed length of 2l octets.

To embed the signature in a BIT STRING the conversion routine OS2BS SHALL be used.

The signature algorithm including the hash function to be used and the signature format is
identified by the following object identifiers:

5.2.1.1. ECDSA

ecdsa-plain-signatures OBJECT IDENTIFIER ::= { id-ecc signatures(4) 1 }

ecdsa-plain-SHA1 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 1 }

ecdsa-plain-SHA224 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 2 }

ecdsa-plain-SHA256 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 3 }

ecdsa-plain-SHA384 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 4 }

ecdsa-plain-SHA512 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 5 }

ecdsa-plain-RIPEMD160 OBJECT IDENTIFIER ::= { ecdsa-plain-signatures 6 }

5.2.1.2. ECGDSA

ecgdsa-plain-signatures OBJECT IDENTIFIER ::= { id-ecc signatures(4) 2 }

ecgdsa-plain-SHA224 OBJECT IDENTIFIER ::= { ecgdsa-plain-signatures 1 }

ecgdsa-plain-SHA256 OBJECT IDENTIFIER ::= { ecgdsa-plain-signatures 2 }

ecgdsa-plain-SHA384 OBJECT IDENTIFIER ::= { ecgdsa-plain-signatures 3 }

ecgdsa-plain-SHA512 OBJECT IDENTIFIER ::= { ecgdsa-plain-signatures 4 }

5.2.1.3. EC-Schnorr

ecschnorr-plain-signatures OBJECT IDENTIFIER ::= { id-ecc signatures(4) 3 }

ecschnorr-plain-SHA224 OBJECT IDENTIFIER ::= { ecschnorr-plain-signatures 1 }

ecschnorr-plain-SHA256 OBJECT IDENTIFIER ::= { ecschnorr-plain-signatures 2 }

ecschnorr-plain-SHA384 OBJECT IDENTIFIER ::= { ecschnorr-plain-signatures 3 }

ecschnorr-plain-SHA512 OBJECT IDENTIFIER ::= { ecschnorr-plain-signatures 4 }

5.2.2. X9.62 Format

In X9.62 format the ECDSA-signature (r, s) is encoded as ASN.1 structure with the following
syntax:

ECDSA-Sig-Value ::= SEQUENCE {

r INTEGER,

s INTEGER

}

To embed the signature in a BIT STRING the DER encoded ECDSA-Sig-Value SHALL be the
value of the bit string (including tag and length field).

The following object identifiers are defined in X9.62 [4].
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id-ecSigType OBJECT IDENTIFIER ::= { ansi-x9-62 signatures(4) }

ecdsa-with-Sha1 OBJECT IDENTIFIER ::= { id-ecSigType 1 }

ecdsa-with-Specified OBJECT IDENTIFIER ::= { id-ecSigType 3 }

ecdsa-with-Sha224 OBJECT IDENTIFIER ::= { ecdsa-with-Specified 1 }

ecdsa-with-Sha256 OBJECT IDENTIFIER ::= { ecdsa-with-Specified 2 }

ecdsa-with-Sha384 OBJECT IDENTIFIER ::= { ecdsa-with-Specified 3 }

ecdsa-with-Sha512 OBJECT IDENTIFIER ::= { ecdsa-with-Specified 4 }

For ecdsa-with-Specified the object identifier of the hash function to be used MUST be
provided as parameter in the AlgorithmIdentifier.

Note: X9.62 also provides ecdsa-with-Recommended which refers to ECDSA with ”the nat-
ural size” hash function. This alternative is not supported by this guideline and MUST NOT
be used.

5.3. Key Agreement

This section gives the object identifiers that SHALL be used for key agreement. Notice that the
key agreement algorithms with block cipher 3DES SHOULD NOT be used in new applications
and are only included for backward compatibility.

5.3.1. ElGamal Key Agreement

The object identifier for the ElGamal key agreement protocol (ECKA-EG) is:

ecka-eg OBJECT IDENTIFIER ::= { id-ecc key-establishment(5) 1 }

The object identifiers for ECKA-EG with specified key derivation functions are:

ecka-eg-X963KDF OBJECT IDENTIFIER ::= { ecka-eg 1 }

ecka-eg-X963KDF-SHA1 OBJECT IDENTIFIER ::= { ecka-eg-X963KDF 1 }

ecka-eg-X963KDF-SHA224 OBJECT IDENTIFIER ::= { ecka-eg-X963KDF 2 }

ecka-eg-X963KDF-SHA256 OBJECT IDENTIFIER ::= { ecka-eg-X963KDF 3 }

ecka-eg-X963KDF-SHA384 OBJECT IDENTIFIER ::= { ecka-eg-X963KDF 4 }

ecka-eg-X963KDF-SHA512 OBJECT IDENTIFIER ::= { ecka-eg-X963KDF 5 }

ecka-eg-X963KDF-RIPEMD160 OBJECT IDENTIFIER ::= { ecka-eg-X963KDF 6 }

ecka-eg-SessionKDF OBJECT IDENTIFIER ::= { ecka-eg 2 }

ecka-eg-SessionKDF-3DES OBJECT IDENTIFIER ::= { ecka-eg-SessionKDF 1 }

ecka-eg-SessionKDF-AES128 OBJECT IDENTIFIER ::= { ecka-eg-SessionKDF 2 }

ecka-eg-SessionKDF-AES192 OBJECT IDENTIFIER ::= { ecka-eg-SessionKDF 3 }

ecka-eg-SessionKDF-AES256 OBJECT IDENTIFIER ::= { ecka-eg-SessionKDF 4 }

5.3.1.1. Message Format

The object identifiers beneath SessionKDF SHALL be associated with the message format as
specified in Table 5.2 using the respective block cipher for encryption and authentication.

Note: The message format is compatible to ISO 7816-4 Secure Messaging [25].
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Object Type Symbol Tag

Ephemeral Public Key ECPoint P̃A 0x97

Padding indicator and ciphertext Octet String E(KEnc,M) 0x87

Integrity Protection Octet String MAC(KMac,M) 0x8E

Table 5.2.: Tags for messages protected by ECKA-EG.

5.3.1.2. Authentication

For message authentication the block cipher SHALL be used in CMAC-mode [28] with KMac =
KDFSession(ZAB, 2).

5.3.1.3. Encryption

For message encryption the block cipher SHALL be used in CBC-mode [17] with key KEnc =
KDFSession(ZAB, 1) and IV = E(KEnc, 0).

5.3.2. Anonymous Diffie-Hellman Key Agreement

The object identifier for the anonymous Diffie-Hellman key agreement protocol (ECKA-DH) is:

ecka-dh OBJECT IDENTIFIER ::= { id-ecc key-establishment(5) 2 }

The object identifiers for ECKA-DH with specified key derivation functions are:

ecka-dh-X963KDF OBJECT IDENTIFIER ::= { ecka-dh 1 }

ecka-dh-X963KDF-SHA1 OBJECT IDENTIFIER ::= { ecka-dh-X963KDF 1 }

ecka-dh-X963KDF-SHA224 OBJECT IDENTIFIER ::= { ecka-dh-X963KDF 2 }

ecka-dh-X963KDF-SHA256 OBJECT IDENTIFIER ::= { ecka-dh-X963KDF 3 }

ecka-dh-X963KDF-SHA384 OBJECT IDENTIFIER ::= { ecka-dh-X963KDF 4 }

ecka-dh-X963KDF-SHA512 OBJECT IDENTIFIER ::= { ecka-dh-X963KDF 5 }

ecka-dh-X963KDF-RIPEMD160 OBJECT IDENTIFIER ::= { ecka-dh-X963KDF 6 }

ecka-dh-SessionKDF OBJECT IDENTIFIER ::= { ecka-dh 2 }

ecka-dh-SessionKDF-3DES OBJECT IDENTIFIER ::= { ecka-dh-SessionKDF 1 }

ecka-dh-SessionKDF-AES128 OBJECT IDENTIFIER ::= { ecka-dh-SessionKDF 2 }

ecka-dh-SessionKDF-AES192 OBJECT IDENTIFIER ::= { ecka-dh-SessionKDF 3 }

ecka-dh-SessionKDF-AES256 OBJECT IDENTIFIER ::= { ecka-dh-SessionKDF 4 }

5.4. PACE

This section gives the object identifiers that SHALL be used for PACE. Notice that the object
identifier with block cipher 3DES SHOULD NOT be used in new applications and is only
included for backward compatibility.

The object identifiers for the PACE protocol with generic mapping are:

id-PACE-KA OBJECT IDENTIFIER ::= { id-ecc key-establishment(5) 3 }

id-PACE-KA-GM OBJECT IDENTIFIER ::= { id-PACE-KA 1 }

id-PACE-KA-GM-SessionKDF-3DES OBJECT IDENTIFIER ::= { id-PACE-KA-GM 1 }

id-PACE-KA-GM-SessionKDF-AES-128 OBJECT IDENTIFIER ::= { id-PACE-KA-GM 2 }

id-PACE-KA-GM-SessionKDF-AES-192 OBJECT IDENTIFIER ::= { id-PACE-KA-GM 3 }

id-PACE-KA-GM-SessionKDF-AES-256 OBJECT IDENTIFIER ::= { id-PACE-KA-GM 4 }
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Here, public keys SHALL be structured according to section 5.1 and nonces SHALL be encoded
as octet strings. The used encoding for the elliptic curve points MUST be negotiated in advance
by the protocol parties.

5.4.1. PACE on Smartcards

For smartcards, Part 2 of the Technical Guideline [12] gives a detailed specification of PACE.
Implementations according to that specification SHALL use the corresponding object identifiers.

id-PACE OBJECT IDENTIFIER ::= { bsi-de protocols(2) smartcards(2) 4 }

For PACE with generic mapping and specified symmetric ciphers, [12] defines the following
object identifiers:

id-PACE-ECDH-GM OBJECT IDENTIFIER ::= { id-PACE 2 }

id-PACE-ECDH-GM-3DES-CBC-CBC OBJECT IDENTIFIER ::= { id-PACE-ECDH-GM 1 }

id-PACE-ECDH-GM-AES-CBC-CMAC-128 OBJECT IDENTIFIER ::= { id-PACE-ECDH-GM 2 }

id-PACE-ECDH-GM-AES-CBC-CMAC-192 OBJECT IDENTIFIER ::= { id-PACE-ECDH-GM 3 }

id-PACE-ECDH-GM-AES-CBC-CMAC-256 OBJECT IDENTIFIER ::= { id-PACE-ECDH-GM 4 }

Here, elliptic curve points are always represented in uncompressed encoding.
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6. Standardized Domain Parameters

While this guideline supports domain parameters standardized by X9.62 [4] it is RECOM-
MENDED to use the domain parameters of the ECC Brainpool working group, which are stan-
dardized by the IETF RFC 5639 [32]:

BrainpoolCurveNames CURVES ::= {

{ID brainpoolP160r1} | {ID brainpoolP160t1} |

{ID brainpoolP192r1} | {ID brainpoolP192t1} |

{ID brainpoolP224r1} | {ID brainpoolP224t1} |

{ID brainpoolP256r1} | {ID brainpoolP256t1} |

{ID brainpoolP320r1} | {ID brainpoolP320t1} |

{ID brainpoolP384r1} | {ID brainpoolP384t1} |

{ID brainpoolP512r1} | {ID brainpoolP512t1}

...

}

The identifier brainpoolPLrj and brainpoolPLtj depend on two parameters:

1. The integer L denotes the bit length of the prime p which is also the bit length of the
order n of the base point.

2. The integer j denotes the j-th elliptic curve defined by Brainpool. Currently, only curves
for j = 1 are specified.

The curve with curve identifier name brainpoolPLrj is Fp-isomorphic to the twisted curve
with curve name brainpoolPLtj with coefficient a = −3 mod p.

Note: In accordance to chapter 2.3.4, the subset of domain parameters with L ≥ 224 SHALL
be used.

The object identifier versionOne represents the tree containing the object identifiers for each
set of elliptic curve domain parameters as specified in [32]. The object identifier has the following
value:

ecStdCurvesAndGeneration OBJECT IDENTIFIER ::= {

iso(1) identified-organization(3) teletrust(36) algorithm(3)

signature-algorithm(3) ecSign(2) ecStdCurvesAndGeneration(8)

}

ellipticCurve OBJECT IDENTIFIER ::= { ecStdCurvesAndGeneration 1 }

versionOne OBJECT IDENTIFIER ::= { ellipticCurve 1 }

brainpoolP160r1 OBJECT IDENTIFIER ::= { versionOne 1 }

brainpoolP160t1 OBJECT IDENTIFIER ::= { versionOne 2 }

brainpoolP192r1 OBJECT IDENTIFIER ::= { versionOne 3 }

brainpoolP192t1 OBJECT IDENTIFIER ::= { versionOne 4 }
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brainpoolP224r1 OBJECT IDENTIFIER ::= { versionOne 5 }

brainpoolP224t1 OBJECT IDENTIFIER ::= { versionOne 6 }

brainpoolP256r1 OBJECT IDENTIFIER ::= { versionOne 7 }

brainpoolP256t1 OBJECT IDENTIFIER ::= { versionOne 8 }

brainpoolP320r1 OBJECT IDENTIFIER ::= { versionOne 9 }

brainpoolP320t1 OBJECT IDENTIFIER ::= { versionOne 10 }

brainpoolP384r1 OBJECT IDENTIFIER ::= { versionOne 11 }

brainpoolP384t1 OBJECT IDENTIFIER ::= { versionOne 12 }

brainpoolP512r1 OBJECT IDENTIFIER ::= { versionOne 13 }

brainpoolP512t1 OBJECT IDENTIFIER ::= { versionOne 14 }
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Appendix

A. The Signature Algorithm – EC-KCDSA (Informative)

For informative reasons, this appendix describes the Elliptic Curve Korean Certificate Based
Digital Signature Algorithm in conformance to [20]. The algorithm uses the public key P ′A :=
[d−1A mod n]G. Let the value zA be defined as l leftmost bits of the sequence FE2OS(xPA

) ‖
FE2OS(yPA

). In the following, l(b) denotes the length of a bit string b.

A.1. Signature Algorithm

A proceeds as follows to generate the EC-KCDSA signature (r, s) on a message M .

Input: The following information is required as input:

1. A’s private key dA and the elliptic curve domain parameters (p, a, b,G, n, h).

2. The hash value zA of the A’s certification data.

3. The message M to be signed.

Output: The EC-KCDSA signature (r, s) over M .

Actions: The following actions are performed:

0. e = Hτ (zA ‖M)

1. k = RNG({1, 2, . . . , n− 1})
2. Q = [k]G

3. c = Hτ (FE2OS(xQ))

4. r = OS2I(c)

5. w = OS2I(c⊕ e)
If w ≥ n, set w = w − n.

6. s = (k − w)dA mod n

If s = 0 goto 1.

7. Output (r, s)

Note: The signature depends on the random number k. If A signs the same document M
twice, both signatures differ with a very high probability.

A.2. Verification Algorithm

B proceeds as follows to verify the received EC-KCDSA signature (r, s) on M .

Input: The following input is necessary:

1. A’s authentic public key P ′A and the domain parameters (p, a, b,G, n, h).

2. The hash value zA of the A’s certification data.

3. The signed message M .
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4. The EC-KCDSA signature (r, s).

Output: True, if the signature is valid, and False otherwise.

Actions: The following actions are performed:

1. Verify that s ∈ {1, 2, . . . , n− 1} and l(OS2BS(I2OS(r))) ≤ τ.
If this is not the case, output False and terminate.

2. e = Hτ (zA ‖M)

3. w = OS2I(I2OS(r)⊕ e) mod n

4. Q = [w]G+ [s]PA

5. c = FE2OS(xQ))

6. v = Hτ (c)

7. Output True if v = r, and False otherwise.
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